Articles | Volume 44, issue 1
https://doi.org/10.5194/jm-44-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-44-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Upper Oligocene to Pleistocene planktonic foraminifera stratigraphy at North Atlantic DSDP Site 407, Reykjanes Ridge: diversity trends and biozonation using modern Neogene taxonomic concepts
Tirza Maria Weitkamp
CORRESPONDING AUTHOR
Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 114 18 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Mohammad Javad Razmjooei
Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 114 18 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Paul Nicholas Pearson
Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
Helen Katherine Coxall
Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 114 18 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related authors
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Flavia Boscolo-Galazzo, David Evans, Elaine Mawbey, William Gray, Paul Pearson, and Bridget Wade
EGUsphere, https://doi.org/10.5194/egusphere-2024-1608, https://doi.org/10.5194/egusphere-2024-1608, 2024
Short summary
Short summary
Here we present a comparison of results from the Mg/Ca and oxygen stable isotopes paleothermometers obtained from 57 modern to fossil species of planktonic foraminifera from the last 15 million of years. We find that the occurrence (or not) of species-species offsets in Mg/Ca is conservative between ancestor-descendent species, and that taking into account species kinship can significantly improve temperature reconstructions by several degrees.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
David K. Hutchinson, Agatha M. de Boer, Helen K. Coxall, Rodrigo Caballero, Johan Nilsson, and Michiel Baatsen
Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, https://doi.org/10.5194/cp-14-789-2018, 2018
Short summary
Short summary
The Eocene--Oligocene transition was a major cooling event 34 million years ago. Climate model studies of this transition have used low ocean resolution or topography that roughly approximates the time period. We present a new climate model simulation of the late Eocene, with higher ocean resolution and topography which is accurately designed for this time period. These features improve the ocean circulation and gateways which are thought to be important for this climate transition.
Paul N. Pearson and IODP Expedition 363 Shipboard Scientific
Party
J. Micropalaeontol., 37, 97–104, https://doi.org/10.5194/jm-37-97-2018, https://doi.org/10.5194/jm-37-97-2018, 2018
Short summary
Short summary
We describe an unusual millimetre-long tube that was discovered in sediment from the deep sea floor. The tube was made by a single-celled organism by cementing together sedimentary grains from its environment. The specimen is unusual because it implies that the organism used a very high degree of discrimination in selecting its grains, as they are all of one type and most are oriented the same way. It raises intriguing questions of how the organism accomplished this activity.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
P. N. Pearson and E. Thomas
Clim. Past, 11, 95–104, https://doi.org/10.5194/cp-11-95-2015, https://doi.org/10.5194/cp-11-95-2015, 2015
Short summary
Short summary
The Paleocene-to-Eocene thermal maximum was a period of extreme global warming caused by perturbation to the global carbon cycle 56Mya. Evidence from marine sediment cores has been used to suggest that the onset of the event was very rapid, over just 11 years of annually resolved sedimentation. However, we argue that the supposed annual layers are an artifact caused by drilling disturbance, and that the microfossil content of the cores shows the onset took in the order of thousands of years.
Paul N. Pearson, Sam L. Evans, and James Evans
J. Micropalaeontol., 34, 59–64, https://doi.org/10.1144/jmpaleo2013-032, https://doi.org/10.1144/jmpaleo2013-032, 2015
P. N. Pearson and W. Hudson
Sci. Dril., 18, 13–17, https://doi.org/10.5194/sd-18-13-2014, https://doi.org/10.5194/sd-18-13-2014, 2014
Related subject area
Planktic foraminifera
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Spine-like structures in Paleogene muricate planktonic foraminifera
Taxonomic review of living planktonic foraminifera
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Jurassic planktic foraminifera from the Polish Basin
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Ontogenetic disparity in early planktic foraminifers
Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea)
Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows
Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Anieke Brombacher, Alex Searle-Barnes, Wenshu Zhang, and Thomas H. G. Ezard
J. Micropalaeontol., 41, 149–164, https://doi.org/10.5194/jm-41-149-2022, https://doi.org/10.5194/jm-41-149-2022, 2022
Short summary
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary
Short summary
Three well-preserved new species of Middle Jurassic (Bajocian) planktonic foraminifera from the continental margin of northwest Australia are described. This is on the southern shelf of the Tethys Ocean, and these planktonics are the first to be reported from the Jurassic Southern Hemisphere. Described as new are Globuligerina bathoniana australiana n. ssp., G. altissapertura n. sp. and Mermaidogerina loopae n. gen. n. sp. The research is part of a study of regional Jurassic foraminifera.
Sophie Kendall, Felix Gradstein, Christopher Jones, Oliver T. Lord, and Daniela N. Schmidt
J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, https://doi.org/10.5194/jm-39-27-2020, 2020
Short summary
Short summary
Changes in morphology during development can have profound impacts on an organism but are hard to quantify as we lack preservation in the fossil record. As they grow by adding chambers, planktic foraminifera are an ideal group to study changes in growth in development. We analyse four different species of Jurassic foraminifers using a micro-CT scanner. The low morphological variability suggests that strong constraints, described in the modern ocean, were already acting on Jurassic specimens.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Cited articles
Aksu, A. E. and Kaminski, M. A: Neogene planktonic foraminiferal biostratigraphy and biochronology in Baffin Bay and the Labrador Sea, College Station, TX, Ocean, in: Proceedings of the Ocean Drilling Program, edited by: Srivastava, S. P., Arthur, M. A., Clement, B., et al., Sci. Res., 105, 287–304, 1989.
Anthonissen, E. D.: A new Pliocene biostratigraphy for the northeastern North Atlantic, Newsl. Stratigr., 43, 91–126, https://doi.org/10.1127/0078-0421/2009/0043-009, 2009.
Anthonissen, E. D.: A new Miocene biostratigraphy for the northeastern North Atlantic: An integrated foraminiferal, bolboformid, dinoflagellate and diatom zonation, Newsl. Stratigr., 45, 281–307, https://doi.org/10.1127/0078-0421/2012/0025, 2012.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, https://doi.org/10.1111/j.1469-185X.2011.00178.x, 2011.
Bandy, O. L.: Neogene planktonic foraminiferal zones, California, and some geologic implications, Palaeogeogr., Palaeocl., 12, 131–150, https://doi.org/10.1016/0031-0182(72)90010-7, 1972.
Banner, F. T. and Blow, W. H.: Some primary types of species belonging to the Superfamily Globigerinacea, Contributions from the Cushman Laboratory for Foraminiferal Research, 11, 1–41, 1960.
Bé, A. W.: An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera, Oceanic Micropaleontology, edited by: Ramsey, A. T. S., Academic Press, London, 1–100, 1977.
Berggren, W. A.: Rates of evolution in some Cenozoic planktonic foraminifera, Micropaleontology, 15, 351–365, 1969.
Berggren, W. A.: Cenozoic biostratigraphy and paleobiogeography of the North Atlantic, Initial Rep. Deep Sea, 12, 965–1001, 1972.
Berggren, W. A.: Recent advances in Cenozoic planktonic foraminiferal biostratigraphy, biochronology, and biogeography: Atlantic Ocean, Micropaleontology, 24, 337–370, https://doi.org/10.2307/1485368, 1978.
Berggren, W. A.: Neogene Planktonic foraminifera magnetobiostratigraphy of the Southern Kerguelen Plateau (Sites 747, 748 and 751), in: Proc. ODP, Sci. Results., edited by: Wise, S. W., Schlich, R., et al., College Station, TX, 631–647, 1992.
Berggren, W. A. and Schnitker, D.: Cenozoic Marine Environments in the North Atlantic and Norwegian-Greenland Sea, in: Structure and Development of the Greenland-Scotland Ridge: New Methods and Concepts, edited by: Bott, M. H. P., Saxov, S., Talwani, M., and Thiede, J., Springer US, 495–548, https://doi.org/10.1007/978-1-4613-3485-9_26, 1983.
Berggren, W. A., Kent, D. V., Swisher III, C. C., and Aubry, M.-P.: A revised Cenozoic geochronology and chronostratigraphy, in: Geochronology, Time Scales and Global Stratigraphic Correlation, edited by: Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., SEPM Special Publication, 54, 129–212, 1995.
Blow, W. H.: Age, correlation and biostratigraphy of the upper Tocuyo (San Lorenzo) and Pozon Formations, eastern Falcon, Venezuela, Bull. Am. Paleontol., 39, 67–251, 1959.
Blow, W. H.: Late middle Eocene to Recent planktonic foraminiferal biostratigraphy, 1st International Conference on PlanktonicMicrofossils Geneva, 1967, 199–421, 1969.
Boesiger, T. M., De Kaenel, E., Bergen, J. A., Browning, E., and Blair, S. A.: Oligocene to Pleistocene taxonomy and stratigraphy of the genus Helicosphaera and other placolith taxa in the circum North Atlantic Basin, J. Nannoplankt. Res., 37, 145–175, 2017.
Bolli, H. M.: Planktonic foraminifera from the Oligocene- Miocene Cipero and Lengua formations of Trinidad, B. W. I., in: Studies in Foraminifera, edited by: Loeblich Jr., A. R.,, Tappan, H., Beckmann, J. P., Bolli, H. M., Gallitelli, E. M., and Troelsen, J. C., United States National Museum Bulletin 215, Washington DC: U.S. Government Printing Office, 97–124, 1957.
Bolli, H. M., Loeblich, A. R., and Tappan, H.: Planktonic foraminiferal families Hantkeninidae, Orbulinidae, Globorotaliidae and Globotruncanidae, United States National Museum Bulletin, 215, 3–50, 1957.
Bolli, H. M. and Bermúdez, P.: Zonation based on planktonic foraminifera of middle Miocene to Pliocene warm-water sediments, Boletin Informativo Associacion Venezolana de Geologia, Mineria y Petroleo, 8, 119–149, 1965.
Bolli, J. B. and Saunders, H.: Oligocene to Holocene low latitude planktonic foraminifera, Plankton stratigraphy, Cambridge University Press, 1985.
Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K.: Plankton Stratigraphy: Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids, CUP Archive, 1989.
Boscolo-Galazzo, F., Jones, A., Dunkley Jones, T., Crichton, K. A., Wade, B. S., and Pearson, P. N.: Late Neogene evolution of modern deep-dwelling plankton, Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, 2022.
Bott, M. H. P.: Deep Structure and Geodynamics of the Greenland-Scotland Ridge: An Introductory Review, in: Structure and Development of the Greenland-Scotland Ridge, edited by: Bott, M. H. P., Saxov, S., Talwani, M., and Thiede, J., Springer US, 3–9, https://doi.org/10.1007/978-1-4613-3485-9_1, 1983.
Bown, P. R. and Young, J. R.: Techniques, in: Calcareous Nannofossil Biostratigraphy (British Micropalaeontological Society Publications Series), edited by: Bown, P. R., Chapman and Kluwer Academic, London, 16–28, 1998.
Brummer, G.-J. A. and Kučera, M.: Taxonomic review of living planktonic foraminifera, J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, 2022.
Chaabane, S., De Garidel-Thoron, T., Giraud, X., Schiebel, R., Beaugrand, G., Brummer, G.-J., Casajus, N., Greco, M., Grigoratou, M., Howa, H., Jonkers, L., Kucera, M., Kuroyanagi, A., Meilland, J., Monteiro, F., Mortyn, G., Almogi-Labin, A., Asahi, H., Avnaim-Katav, S., Bassinot, F., Davis, C. V., Field, D. B., Hernández-Almeida, I., Herut, B., Hosie, G., Howard, W., Jentzen, A., Johns, D. G., Keigwin, L., Kitchener, J., Kohfeld, K. E., Lessa, D. V. O., Manno, C., Marchant, M., Ofstad, S., Ortiz, J. D., Post, A., Rigual-Hernandez, A., Rillo, M. C., Robinson, K., Sagawa, T., Sierro, F., Takahashi, K. T., Torfstein, A., Venancio, I., Yamasaki, M., and Ziveri, P.: The FORCIS database: A global census of planktonic Foraminifera from ocean waters, Sci. Data, 10, 354, https://doi.org/10.1038/s41597-023-02264-2, 2023.
Cifelli, R.: Radiation of Cenozoic Planktonic Foraminifera, Syst. Zool., 18, 154, https://doi.org/10.2307/2412601, 1969.
Crundwell, M. P. and Nelson, C. S.: A magnetostratigraphically-constrained chronology for late Miocene bolboformids and planktic foraminifers in the temperate Southwest Pacific, Stratigraphy, 4, 1–34, https://doi.org/10.29041/strat.04.1.01, 2007.
Cushman, J. A. and Bermudez, P. J.: Further new species of foraminifera from the Eocene of Cuba, Contributions from the Cushman Laboratory for Foraminiferal Research, 13, 1–29, 1937.
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., Thierry, V., and Gladyshev, S.: The northern North Atlantic Ocean mean circulation in the early 21st century, Prog. Oceanogr., 146, 142–158, https://doi.org/10.1016/j.pocean.2016.06.007, 2016.
Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.: A resolution for the coiling direction paradox in Neogloboquadrina pachyderma: coiling direction in N. pachyderma, Paleoceanography, 21, 1–14, https://doi.org/10.1029/2005PA001189, 2006.
Darling, K. F., Kucera, M., Pudsey, C. J., and Wade, C. M.: Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics, P. Natl. Acad. Sci., 101, 7657–7662, https://doi.org/10.1073/pnas.0402401101, 2004.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H.: Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y., Geology, 45, 375–378, 2017.
Dirzo, R. and Mendoza, E.: Biodiversity, in: Encyclopedia of Ecology, edited by: Jørgensen, S. E. and Fath, B. D., Academic Press, 368–377, https://doi.org/10.1016/B978-008045405-4.00460-2D, 2008.
Dowsett, H. J., Gosnell, L. B., and Poore, R. Z.: Pliocene planktic foraminifer census data from Deep Sea Drilling Project, U.S. Geological Survey, Open-File Report 88-654, 1–14, 1988.
Dowsett, H. J. and Poore, R. Z.: A new planktic foraminifer transfer function for estimating pliocene – Holocene paleoceanographic conditions in the North Atlantic, Mar. Micropaleontol., 16, 1–23, https://doi.org/10.1016/0377-8398(90)90026-I, 1990.
Dowsett, H. J. and Poore, R. Z.: Data report: Pliocene planktonic foraminifers from the California margin: Site 1021, Proceedings of the Ocean Drilling Program: Scientific Results, 167, 115–117, 2000.
El Bani Altuna, N., Pieñkowski, A. J., Eynaud, F., and Thiessen, R.: The morphotypes of Neogloboquadrina pachyderma: Isotopic signature and distribution patterns in the Canadian Arctic Archipelago and adjacent regions, Mar. Micropaleontol., 142, 13–24, https://doi.org/10.1016/j.marmicro.2018.05.004, 2018.
Eynaud, F.: Planktonic foraminifera in the Arctic: Potentials and issues regarding modern and quaternary populations, IOP Conference Series: Earth and Environmental Science, IOP, 27 June–12 July 2010, Rimouski, Quebec, Montreal, Canada, 14, 012005, https://doi.org/10.1088/1755-1315/14/1/012005, 2011.
Eynaud, F., Cronin, T. M., Smith, S. A., Zaragosi, S., Mavel, J., Mary, Y., Mas, V,. and Pujol, C.: Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma from ACEX cores: Implications for Late Pleistocene circulation in the Arctic Ocean, Micropaleontology, 55, 101–116, https://doi.org/10.47894/MPAL.55.2.02, 2009.
Ericson, D. B.: Coiling Direction of Globigerina pachyderma as a Climatic Index, Science, 130, 219–220, https://doi.org/10.1126/science.130.3369.219, 1959.
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A.: Interplay Between Changing Climate and Species' Ecology Drives Macroevolutionary Dynamics, Science, 332, 349–351, https://doi.org/10.1126/science.1203060, 2011.
Fabbrini, A., Baldassini, N., Caricchi, Ch., Di Stefano, A., Dinarès-Turell, J., Foresi, L. M., Lirer, F., Patricolo, S., Sagnotti, L., and Winkler, A.: Integrated Quantitative Calcareous Plankton Bio-Magnetostratigraphy of the Early Miocene from IODP Leg 342, Hole U1406A, Newfoundland Ridge, NW Atlantic Ocean, Stratigr. Geol. Correl., 27, 259–276, 2019.
Fabbrini, A., Greco, M., Iacoviello, F., Kucera, M., Ezard, T. H. G., and Wade, B. S.: Bridging the extant and fossil record of planktonic foraminifera: implications for the Globigerina lineage, Palaeontology, 66, e12676, https://doi.org/10.1111/pala.12676, 2023.
Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P., and Saupe, E. E.: Origination of the modern-style diversity gradient 15 million years ago, Nature, 614, 7949, https://doi.org/10.1038/s41586-023-05712-6, 2023.
Fenton, I. S., Woodhouse, A., Aze, T., Lazarus, D., Renaudie, J., Dunhill, A. M., Young, J. R., and Saupe, E. E.: Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences, Sci. Data, 8, 160, https://doi.org/10.1038/s41597-021-00942-7, 2021.
Flower, B. P.: Data report: Planktonic foraminifers from the subpolar North Atlantic and Nordic Seas, sites 980–987 and 907, Proceedings of the Ocean Drilling Program, Scientific Results, 162, 19–34, 1999.
Fraass, A. J., Kelly, D. C., and Peters, S. E.: Macroevolutionary History of the Planktic Foraminifera, Annu. Rev. Earth Pl. Sc., 43, 139–166, https://doi.org/10.1146/annurev-earth-060614-105059, 2015.
Foresi, L. M., Iaccarino, S. M., and Salvatorini, G.: Neogloboquadrina atlantica praeatlantica, new subspecies from late Middle Miocene, Riv. Ital. Paleontol. S., 108, 325–336, 2000.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: Past: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 4, 1–9, http://palaeo-electronica.org/2001_1/past/issue1_01.htm, 2001.
Hansen, B. and Østerhus, S.: North Atlantic–Nordic seas exchanges, Prog. Oceanogr., 45, 109–208, 2000.
Hátún, H., Lohmann, K., Matei, D., Jungclaus, J. H., Pacariz, S., Bersch, M., Gislason, A., Ólafsson, J., and Reid, P. C.: An inflated subpolar gyre blows life toward the northeastern Atlantic, Prog. Oceanogr., 147, 49–66, 2016.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic Foraminifera. Springer, Berlin, 1989.
Hilgen, F. J., Iaccarino, S., Krijgsman, W., Villa, G., Langereis, C. G., and Zachariasse, W. J.: The global boundary stratotype section and point (GSSP) of the Messinian Stage (uppermost Miocene), Episodes, 23, 172–178, 2000.
Huber, B. T., Bijma, J., and Darling, K.: Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orbigny), Paleobiology, 23, 33–62, https://doi.org/10.1017/S0094837300016638, 1997.
Huddlestun, P. F.: Planktonic foraminiferal biostratigraphy, Deep-Sea Drill. Project. Leg. 81, In DSDP, 81, 429–438, 1984.
Hutchinson, D. K., Coxall, H. K., O'Regan, M., Nilsson, J., Caballero, R., and De Boer, A. M.: Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition, Nat. Commun., 10, 3797, https://doi.org/10.1038/s41467-019-11828-z, 2019.
Iaccarino, S., Foresi, L., Mazzei, R., and Salvatorini, G.: Calcareous plankton biostratigraphy of the Miocene sediments of the Tremiti Islands (Southern Italy), Rev. Esp. Micropal., 33, 237–248, 2001.
Iwatani, H., Irizuki, T., and Hayashi, H.: Global cooling in marine climates and local tectonic events in Southwest Japan at the Plio–Pleistocene boundary, Palaeogeogr. Palaeocl., 350, 1–18, 2012.
Jenkins, G. D.: Planktonic foraminiferal zones and new taxa from the Lower Miocene to the pleistocene of New Zealand, New Zeal. J. Geol. Geop., 10, 1064–1078, https://doi.org/10.1080/00288306.1967.10423209, 1967.
Jenkins, D. G.: Southern mid-latitude Paleocene to Holocene planktic foraminifera, in: Plankton Stratigraphy, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., 263–282, Cambridge University Press, New York, 1985.
Kaminski, M. A. and Berggren, W. A.: A Neotype for Neogloboquadrina atlantica (Berggren 1972), Micropaleontology, 67, 106–107, https://doi.org/10.47894/mpal.67.1.08, 2021.
Kaneps, A.: 13. Cenozoic Planktonic Foraminifera from Antarctic Deep-Sea Sediments, Leg 28, DSDP, in: Init. Repts, DSDP, 28, edited by: Hayes, D. E., Frakes, L. A., Barrett, P. J., Burns, D. A., et al., 573–583 https://doi.org/10.2973/dsdp.proc.28.113.1975, 1975.
Keller, G.: Morphologic variation of Neogloboquadrina pachyderma (Ehrenberg) in sediment of the marginal and central Northeast Pacific and paleoclimatic interpretation, J. Foramin. Res., 8, 208–224, 1978.
Kennett, J. P.: The Globorotalia crassaformis bioseries in north Westland and Marlborough, New Zealand, Micropaleontology, 12, 235–245, 1966.
Kennett, J. P.: Latitudinal variation in Globigerina pachyderma (Ehrenberg) in surface sediments of the southwest Pacific Ocean, Micropaleontology, 14, 305–318, 1968.
Kennett, J. P., Rozo-Vera, G. A., and Machain Castillo, M. L.: Latest Neogene planktonic foraminiferal biostratigraphy of the California margin, Proceedings of the Ocean Drilling Program, 167, 41–62, 2000.
Kennett, J. P. and Srinivasan, M. S.: Surface ultrastructural variation in Neogloboquadrina pachyderma (Ehrenberg): Phenotypic variation and phylogeny in the Late Cenozoic, Cushman Foundation Special Publication, 19, 134–162, 1980.
Kennett, J. P. and Srinivasan, M. S.: Neogene planktonic foraminifera, Hutchinon Ross Publishing Co., Stroudsburg, Pennsylvania, 1–265, 1983.
Kim, J.-M.: Early Neogene biochemostratigraphy of Pohang Basin: A paleoceanographic response to the early opening of the Sea of Japan (East Sea), Mar. Micropaleontol., 36, 269–290, 1999.
King, D. J., Wade, B. S., Liska, R. D., and Miller, C. G.: A review of the importance of the Caribbean region in Oligo-Miocene low latitude planktonic foraminiferal biostratigraphy and the implications for modern biogeochronological schemes, Earth-Sci. Rev., 202, 102968, https://doi.org/10.1016/j.earscirev.2019.102968, 2020.
Kipp, N. G.: New transfer function for estimating past sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic, in: Investigations of Late Quaternary Paleoceanography and Paleoclimatology, edited by: Cline, R. M. and Hays, J. D., Mere. Geol. Soc. Am., 145, 3–42, 1976.
Krasheninnikov, V. A. and Basov, I. A.: 30. Cenozoic Planktonic Foraminifers of the Falkland Plateau and Argentine Basin, Deep Sea Drilling Project Leg 71, in: Init. Repts, DSDP, 71, edited by: Ludwig, W. J., Krasheninnikov, V. A., and Wise Jr., S. W., 821–858, https://doi.org/10.2973/dsdp.proc.71.130.1983, 1983.
Kucera, M.: Chapter six planktonic foraminifera as tracers of past oceanic environments, Dev. Mar. Geol., 1, 213–262, 2007.
Kucera, M. and Kennett, J. P.: Biochronology and evolutionary implications of Late Neogene California margin planktonic foraminiferal events, Mar. Micropaleontol., 40, 67–81, https://doi.org/10.1016/S0377-8398(00)00029-3, 2000.
Kucera, M. and Schonfeld, J.: The origin of modern oceanic foraminiferal faunas and Neogene climate change, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., The Geological Society of London on behalf of The Micropalaeontological Society, Geological Society of London, 409–425, https://doi.org/10.1144/TMS002.18, 2007.
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., and Weinelt, M.: Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO), Quaternary Sci. Rev., 24, 813–819, https://doi.org/10.1016/j.quascirev.2004.07.017, 2005.
Labrecque, J. L., Kent, D. V., and Cande, S. C.: Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time, Geology, 5, 330–335, 1977.
Lam, A. R. and Leckie, R. M.: Subtropical to temperate late Neogene to Quaternary planktic foraminiferal biostratigraphy across the Kuroshio Current Extension, Shatsky Rise, northwest Pacific Ocean, PLOS ONE, 15, e0234351, https://doi.org/10.1371/journal.pone.0234351, 2020a.
Lam, A. R. and Leckie, R. M.: Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean, Micropaleontology, 66, 177–268, https://doi.org/10.47894/mpal.66.3.01, 2020b.
Lamb, J. L. and Beard, J. H.: Late Neogene planktonic foraminifers in the Caribbean, Gulf of Mexico, and Italian stratotypes, Kansas Univ. Paleont. Contr., no. 57 (Protozoa, art. 8), 1–67, 1972.
Laughton, A. S. and the Exp. 12 Scientific Party: Initial Reports of the Deep Sea Drilling Project, 12, 1243, U.S. Government Printing Office, Washington, D.C., 1972.
Larsen, H. C., Saunders, A. D., Clift, P. D., and the Leg 152 Shipboard Scientific Party: Proc. ODP, Initial Reports, Vol. 152, Ocean Drilling Program, College Station, TX, 977, 1994a.
Le Breton, E., Cobbold, P. R., Dauteuil, O., and Lewis, G.: Variations in amount and direction of seafloor spreading along the northeast Atlantic Ocean and resulting deformation of the continental margin of northwest Europe, Tectonics, 31, 2011TC003087, https://doi.org/10.1029/2011TC003087, 2012.
Leckie, R. M.: Seeking a better life in the plankton, P. Natl. Acad. Sci. USA, 106, 14183–14184, https://doi.org/10.1073/pnas.0907091106, 2009.
Leckie, R. M., Wade, B. S., Pearson, P. N., Fraass, A. J., King, D. J., Olsson, R. K., Premoli Silva, I., Spezzaferri, S., and Berggren, W. A.: Taxonomy, biostratigraphy, and phylogeny of Oligocene and Early Miocene Paragloborotalia and Parasubbotina, Cushman Foundation for Foraminiferal Research, https://discovery.ucl.ac.uk/id/eprint/10049515/ (last access: 18 December 2024), 2018.
LeRoy, L. W.: Some small foraminifera ostracoda and otoliths from the Neogene (Miocene) of the Rokan-Tapanoeli area, central Sumatra, Natuurkunde Tijdschrift voor Nederlandsch-Indië, 99, 215–296, 1939.
LeRoy, L. W.: Miocene foraminifera from Sumatra and Java, Netherlands East Indies, part 1. Miocene foraminifera of central Sumatra, Netherlands East Indies, Colo. School Mines Q., 39, 1–69, 1944.
Lirer, F. and Iaccarino, S.: Integrated stratigraphy (cyclostratigraphy and biochronology) of late Middle Miocene deposits in the Mediterranean area and comparison with the North and Equatorial Atlantic Oceans: Synthesis of the major results, Terra Nova, 17, 338–349, https://doi.org/10.1111/j.1365-3121.2005.00619.x, 2005.
Lowery, C. M., Bown, P. R., Fraass, A. J., and Hull, P. M.: Ecological Response of Plankton to Environmental Change: Thresholds for Extinction. Annu. Rev. Earth Pl. Sc., 48, 403–429, https://doi.org/10.1146/annurev-earth-081619-052818, 2020.
Luyendyk, B. P. and Cann, J. R.: 37. General Implications Of The Leg 49 Drilling Program For North Atlantic Ocean Geology, http://deepseadrilling.org/49/volume/dsdp49_37.pdf (last access: 18 December 2024), 1979.
Martini, E.: Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation, Proceedings of the II Planktonic Conference, Roma, 1970, Edizioni Tecnoscienza, 2, 739–785, 1971.
Maiya, S., Saito, T., and Sato, T.: Late Cenozoic planktonic foraminiferal biostratigraphy of northwest Pacific sedimentary sequences, in: Progress in Micropaleontology, edited by: Takayanagi, Y. and Saito, T., Micropaleontology Press, New York, 395–422, 1976.
Miller, K. G. and Tucholke, B. E.: Development of Cenozoic Abyssal Circulation South of the Greenland-Scotland Ridge, in: Structure and Development of the Greenland-Scotland Ridge, edited by: Bott, M. H. P., Saxov, S., Talwani, M., and Thiede, J., Springer US, 549–589, https://doi.org/10.1007/978-1-4613-3485-9_27, 1983.
Morard, R., Darling, K. F., Mahé, F., Audic, S., Ujiié, Y., Weiner, A. K. M., André, A., Seears, H. A., Wade, C. M., Quillévéré, F., Douady, C. J., Escarguel, G., De Garidel-Thoron, T., Siccha, M., Kucera, M., and De Vargas, C.: PFR2: A curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution, Mol. Ecol. Resour., 15, 1472–1485, https://doi.org/10.1111/1755-0998.12410, 2015.
Morard, R., Hassenrück, C., Greco, M., Fernandez-Guerra, A., Rigaud, S., Douady, C. J., and Kucera, M.: Renewal Of Planktonic Foraminifera Diversity After The Cretaceous Paleogene Mass Extinction By Benthic Colonizers, Nat. Commun., 13, 7135, https://doi.org/10.1038/S41467-022-34794-5, 2022.
Murray, J. W.: Cenozoic biostratigraphy and paleoecology of Sites 403 to 406 based on the foraminifers, Montadert, L., Roberts, Dg, Initial Reports of the Deep Sea Drilling Project, 48, 415–430, 1979.
Nilsen, T. H.: Influence of the Greenland-Scotland Ridge on the Geological History of the North Atlantic and Norwegian-Greenland Sea Areas, in: Structure and Development of the Greenland-Scotland Ridge: New Methods and Concepts, edited by: Bott, M. H. P., Saxov, S., Talwani, M., and Thiede, J., Springer US, 457–478, https://doi.org/10.1007/978-1-4613-3485-9_24, 1983.
Nomura, R.: Geologic age of the lower Josoji Formation, Shimane Peninsula, Southwest Honshu, Japan: Implications for an abrupt change to deep-water during the earlier opening stage of the Japan Sea, Island Arc., 30, e12421, https://doi.org/10.1111/iar.12421, 2021.
Ogniben, L.: Stratigrafie e microfaune del Terzierio della zona di Caiazzo (Caserta), 6; descrizione paleontologiche, Riv. Ital. Paleontol. S., 65, 199–286, 1958.
Olsson, R. K., Berggren, W. A., Hemleben, C., And Huber, B. T.: Atlas of Paleocene Planktonic Foraminifera. Smithsonian Contributions to Paleobiology, nr. 85, Washington, DC, Smithsonian Institution Press, 1–259, 1999
Parker, F. L.: Living planktonic foraminifera from the Gulf of California, J. Foramin. Res., 3, 70–77, 1973.
Parnell-Turner, R., Briais, A., Levay, L., and the Expedition 395 Scientists: Expedition 395 Preliminary Report: Reykjanes Mantle Convection and Climate, International Ocean Discovery Program, College Station TX, https://doi.org/10.14379/iodp.pr.395.2024, 2024.
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A.: Atlas of Eocene Planktonic Foraminifera, Cushman Foundation for Foraminiferal Research, 2006.
Pearson, P. N.: Wall textures and higher taxonomy of Oligocene micro- and medioperforate planktonic foraminifera, in: Atlas of Oligocene Planktonic Foraminifera, edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman Foundation for Foraminiferal Research, 46, 415–428, 2018.
Perch-Nielsen, K.: Cenozoic calcareous nannofossils, Plankton Stratigraphy, 427–455, 1985.
Poore, R. Z.: Oligocene through Quaternary planktonic foraminiferal biostratigraphy of the North Atlantic: DSDP Leg 49, in: Init. Repts, DSDP, 49, edited by: Luyendyk, B. P., Cann, J. R., et al., 447–517, 1979.
Poore, R. Z. and Berggren, W. A.: Late Cenozoic planktonic foraminiferal biostratigraphy and paleoclimatology of the northeastern Atlantic, DSDP Site 116, J. Foraminiferal Res, 5, 270–293, 1975.
Poore, R. Z., Mcdougall, K., Barron, J. A., Brabb, E. E., and Kling, S. A.: Microfossil biostratigraphy and biochronology of the type Relizian and Luisian Stages of California, https://archives.datapages.com/data/pac_sepm/030/030001/pdfs/15.pdf (last access: 18 December 2024), 1981.
Premoli Silva, I. and Spezzaferri, S.: Paleogene planktonic foraminifer biostratigraphy and paleoenvironmental remarks on Paleogene sediments from Indian Ocean sites, Leg 115, in: Proceedings of the Ocean Drilling Program, Scientific Results: Ocean Drilling Program, edited by: Duncan, R. A., Backman, J., Peterson, L. C., et al., College Station, TX, Vol. 115, 277–314, 1990
Pujol, C. and Bourrouilh, R.: 11. Late Miocene to Holocene Planktonic Foraminifers from the Subantarctic South Atlantic, in: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 114, edited by: Ciesielki, P. F., Kristoffersen, Y., et al., 217-232, https://doi.org/10.2973/odp.proc.sr.114.129.1991, 1991.
Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., Krijgsman, W., Moore, T., Raine, I., Sardella, R., and Vernyhorova, Y. V.: Chapter 29 – The Neogene Period, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 1141–1215, https://doi.org/10.1016/B978-0-12-824360-2.00029-2, 2020.
Rögl, F.: 33. Late Cretaceous to Pleistocene Foraminifera from the Southeast Pacific Basin, DSDP Leg 35, in: Init. Repts. DSDP, 35, edited by: Hollister, C. D. and Craddock, C., 539–555, https://doi.org/10.2973/dsdp.proc.35.133.1976, 1976.
Rögl, F.: Globigerina ciperoensis (Foraminiferida) in the Oligocene and Miocene of the Central Paratethys, Annalen Des Naturhistorischen Museums in Wien, Serie A Für Mineralogie Und Petrographie, Geologie Und Paläontologie, Anthropologie Und Prähistorie, 133–159, 1994.
Sahoo, N., Saalim, S. M., Matul, A., Mohan, R., Tikhonova, A., and Kozina, N.: Planktic Foraminiferal Assemblages in Surface Sediments From the Subpolar North Atlantic Ocean, Front. Mar. Sci., 8, 781675, https://doi.org/10.3389/fmars.2021.781675, 2022.
Schenk, B., Gebhardt, H., Wolfgring, E., and Zorn, I.: Cyclic paleo-salinity changes inferred from benthic foraminiferal assemblages in the Upper Burdigalian (Lower Miocene) Korneuburg Basin, Austria, Palaeogeogr. Palaeocl., 490, 473–487, https://doi.org/10.1016/j.palaeo.2017.11.027, 2018.
Schiebel, R., Spielhagen, R. F., Garnier, J., Hagemann, J., Howa, H., Jentzen, A., Martínez-Garcia, A., Meilland, J., Michel, E., Repschläger, J., Salter, I., Yamasaki, M., and Haug, G.: Modern planktic foraminifers in the high-latitude ocean, Mar. Micropaleontol., 136, 1–13, https://doi.org/10.1016/j.marmicro.2017.08.004, 2017.
Shannon, C. E. and Weaver, W.: The mathematical theory of communication, University of Illinois Press, Urbana, 117, 1–132, 1949.
Shipboard Scientific Part: Site 407, in: Initial Reports of the Deep Sea Drilling Project, edited by: Luyendyk, B. P., Cann, J. R., Roberts, W. P., Shor, A. N., et al., Vol. 49, 21–100, Texas A & M University, Ocean Drilling Program, College Station, https://doi.org/10.2973/dsdp.proc.49.1979, 1979.
Shor, A. N. and Poore, R. Z.: Bottom Currents and Ice Rafting in the North Atlantic: Interpretation of Neogene Depositional Environments of Leg 49 Cores: DSDP Leg 49, in: Init. Repts. DSDP, 49, edited by: Luyendyk, B. P., Cann, J. R., et al., 447–517, 1979.
Siccha, M. and Kucera, M.: ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples, Sci. Data, 4, 170109, https://doi.org/10.1038/sdata.2017.109, 2017.
Sierro, F. J., Hernandez-Almeida, I., Alonso-Garcia, M., and Flores, J. A.: Data report: Pliocene–Pleistocene planktonic foraminifer bioevents at IODP Site U13131, Proc. IODP, Vol. 303, 2008.
Spezzaferri, S.: Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record: An overview, Paleontogr. Ital., 81, 1994.
Spezzaferri, S.: Planktonic foraminifer biostratigraphy and paleoenvironmental implications of Leg 152 Sites (East Greenland Margin), Proceedings-Ocean Drilling Program Scientific Results, 161–190, 1998.
Spezzaferri, S. and Pearson, P. N.: Distribution and ecology of Catapsydrax indianus, a new planktonic foraminifer index species for the Late Oligocene–Early Miocene, J. Foramin. Res., 39, 112–119, https://doi.org/10.2113/gsjfr.39.2.112, 2009.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole, C. R., Morard, R., and Stalder, C.: Fossil and Genetic Evidence for the Polyphyletic Nature of the Planktonic Foraminifera “Globigerinoides”, and Description of the New Genus Trilobatus, PLOS ONE, 10, 1–20, https://doi.org/10.1371/journal.pone.0128108, 2015.
Spezzaferri, S., Coxall, H. K., Olsson, R. K., and Hemleben, C.: Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerina, Globigerinella, and Quiltyella n. gen., in: Atlas of Oligocene Planktonic Foraminifera, edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A. Cushman Foundation for Foraminiferal Research, Special Publication, 46, 179–214, 2018.
Spiegler, D.: Planktonic foraminifer Cenozoic biostratigraphy of the Arctic Ocean, Fram Strait (Sites 908–909), Yermak Plateau (Sites 910–912), and East Greenland Margin (Site 913), Proceedings-Ocean Drilling Program Scientific Results, 153–168, http://www-odp.tamu.edu/PUBLICATIONS/srv/abstr151/151-8.htm (last access: 18 December 2024), 1996.
Spiegler, D. and Jansen, E.: Planktonic foraminifer biostratigraphy of Norwegian Sea sediments: ODP Leg 104, Proceedings of the Ocean Drilling Program: Scientific Results, 104, 681–696, https://oceanrep.geomar.de/id/eprint/46666, 1989.
Stärz, M., Jokat, W., Knorr, G., and Lohmann, G.: Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge, Nat. Commun., 8, 15681, https://doi.org/10.1038/ncomms15681, 2017.
Stehman, C. F.: Planktonic Foraminifera in Baffin Bay, Davis Strait and the Labrador Sea, Atl. Geol., 8, 13–19, https://doi.org/10.4138/1398, 1972.
Steinthorsdottir, M., Coxall, H. K., De Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P. N., Pound, M. J., Stoll, H., and Strömberg, C. A. E.: The Miocene: the Future of the Past, Paleoceanogr. Paleocl., 36, e2020PA004037, https://doi.org/10.1029/2020PA004037, 2021.
St. John, K. E. K. and Krissek, L. A.: The late Miocene to Pleistocene ice-rafting history of southeast Greenland, Boreas, 31, 28–35, https://doi.org/10.1111/j.1502-3885.2002.tb01053.x, 2002.
Strack, T., Jonkers, L., Rillo, M. C., Hillebrand, H., and Kucera, M.: Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age, Nat. Ecol. Evol., 6, 1871–1880, https://doi.org/10.1038/s41559-022-01888-8, 2022.
Swift, J. H., Aagaard, K., and Malmberg, S.-A.: The contribution of the Denmark Strait overflow to the deep North Atlantic, Deep-Sea Res. Pt. A, 27, 29–42, 1980.
Rasmussen, S., Lykke-Andersen, H., Kuijpers, A., and Troelstra, S. R.: Post-Miocene sedimentation at the continental rise of Southeast Greenland: The interplay between turbidity and contour currents, Mar. Geol., 196, 37–52, https://doi.org/10.1016/S0025-3227(03)00043-4, 2003.
Talwani, M. and Udintsev, G.: Site 336 and 352, Init. Rep. Deep Sea Drill, Proj., 38, 23–116, 1976.
Talwani, M. and Eldholm, O.: Evolution of the Norwegian-Greenland Sea, Geol. Soc. Am. Bull., 88, 969, https://doi.org/10.1130/0016-7606(1977)88<969:EOTNS>2.0.CO;2, 1977
Tappan, H. and Loeblich, A. R.: Foraminiferal Evolution, Diversification, and Extinction, J. Paleontol., 62, 695–714, 1988.
Tolderlund, D. S. and Bé, A. W. H.: Seasonal Distribution of Planktonic Foraminifera in the Western North Atlantic, Micropaleontology, 17, 297–329, https://doi.org/10.2307/1485143, 1971.
Uenzelmann-Neben, G. and Gruetzner, J.: Chronology of Greenland Scotland Ridge overflow: What do we really know?, Mar. Geol., 406, 109–118, https://doi.org/10.1016/j.margeo.2018.09.008, 2018.
Valentine, J. W. and Jablonski, D.: A twofold role for global energy gradients in marine biodiversity trends, J. Biogeogr., 42, 997–1005, https://doi.org/10.1111/jbi.12515, 2015.
Vilks, G.: Comparison of Globorotalia pachyderma (Ehrenberg) in the water column and sediments of the Canadian Arctic, J. Foramin. Res., 5, 313–325, https://doi.org/10.2113/gsjfr.5.4.313, 1975.
Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A.: Atlas of Oligocene Planktonic Foraminifera, Cushman Foundation for Foraminiferal Research, 2018.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth-Sci. Rev., 104, 111–142, https://doi.org/10.1016/j.earscirev.2010.09.003, 2011.
Weaver, P. P. E.: Late Miocene to Recent planktonic foraminifers from the North Atlantic: Deep Sea Drilling Project Leg 94, Initial Reports of the Deep Sea Drilling Project, https://cir.nii.ac.jp/crid/1361699995093110912 (last access: 18 December 2024), 1987.
Weaver, P. P. E. and Clement, B. M.: Synchroneity of Pliocene planktonic foraminiferal datums in the North Atlantic, Mar. Micropaleontol., 10, 295–307, https://doi.org/10.1016/0377-8398(86)90033-2, 1986.
Wei, K.-Y. and Kennett, J. P.: Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations, Paleoceanography, 1, 67–84, https://doi.org/10.1029/PA001i001p00067, 1986.
Weitkamp, T. M.: North Atlantic Oligocene-Pleistocene planktonic foraminifera and calcareous nannofossil abundances. Dataset version 1, Bolin Centre Database [data set], https://doi.org/10.17043/weitkamp-2024-foraminifera-nannofossils-1, 2024.
Wold, C. N.: Cenozoic sediment accumulation on drifts in the northern North Atlantic, Paleoceanography, 9, 917–941, https://doi.org/10.1029/94PA01438, 1994.
Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J., and Lowery, C. M.: Late Cenozoic cooling restructured global marine plankton communities, Nature, 614, 713–718, 2023.
Wright, J. D. and Miller, K. G.: Control of North Atlantic Deep Water Circulation by the Greenland-Scotland Ridge, Paleoceanography, 11, 157–170, https://doi.org/10.1029/95PA03696, 1996.
Young, J. R.: Neogene, in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P., Br. Micropaleontol. Soc. Publ., London, 225–265, https://doi.org/10.1007/978-94-011-4902-0_8, 1998
Young, J. R., Wade, B. S., and Huber B. T.: pforams@mikrotax website, http://www.mikrotax.org/pforams (last access: 18 December 2024), 2017.
Young, J. R., Bown ,P. R., and Lees, J. A.: Nannotax3 website, International Nannoplankton Association, https://www.mikrotax.org/Nannotax3 (last access: 15 September 2023), 2023.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693, https://doi.org/10.1126/science.105941, 2001.
Short summary
Deep Sea Drilling Project Site 407, near Iceland, offers a valuable 25-million-year record of planktonic foraminifera evolution from the Late Cenozoic. Species counts and ranges, assemblage changes, and biostratigraphic zones were identified. Key findings include the shifts in species dominance and diversity. Challenges include sediment gaps and missing biozone markers. We aim to enhance the Neogene–Quaternary Middle Atlas and improve the North Atlantic palaeoceanography and biostratigraphy.
Deep Sea Drilling Project Site 407, near Iceland, offers a valuable 25-million-year record of...