Articles | Volume 37, issue 1
https://doi.org/10.5194/jm-37-357-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-37-357-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Ercan Özcan
CORRESPONDING AUTHOR
Department of Geological Engineering, Faculty of Mines,
İstanbul Technical University (İTU), Maslak, 34469 Istanbul,
Turkey
Johannes Pignatti
Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza”, Rome, Italy
Christer Pereira
Department of Earth Sciences, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
Ali Osman Yücel
Department of Geological Engineering, Faculty of Mines,
İstanbul Technical University (İTU), Maslak, 34469 Istanbul,
Turkey
Katica Drobne
Palaeontological Institute I. Rakovec ZRC SAZU, Novi trg 2, 1000 Ljubljana, Slovenia
Filippo Barattolo
Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse
Largo San Marcellino, 10, 80138 Naples, Italy
Pratul Kumar Saraswati
Department of Earth Sciences, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
Related subject area
Benthic foraminifera
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Adams, H. and Adams, A.: On a new arrangement of British Rissoae, Ann. Mag.
Nat. Hist., 10, 358–359, 1852.
Afzal, J., Williams, M., and Aldridge, R. J.: Revised stratigraphy of the
lower Cenozoic succession of the Greater Indus Basin in Pakistan, J.
Micropalaeontol., 8, 7–23, 2009.
Afzal, J., Williams, M., Leng, M. J., and Aldridge, R.: Dynamic response of
the shallow marine benthic ecosystem to regional and pan-Tethyan
environmental change at the Paleocene-Eocene boundary, Palaeogeogr.
Palaeocl., 309, 141–160, 2011.
Barattolo, F.: Late Cretaceous–Paleogene dasycladaleans and the K/T
Boundary problem, in: Research advances in
calcareous algae and microbial carbonates, edited by: Bucur, I. and Filipescu, S., 19–40, Cluj University Press, 2002.
Beck, R. A., Burbank, D. W., Sercombe, W. J., Riley, G. W., Barndt, J. K.,
Berry, J. R., Afzal, J., Khan, A. M., Jurgen, H., Metje, J., Cheema, A.,
Shafique, N. A., Lawrence, R. D., and Khan, M. A.: Stratigraphic evidence
for an early collision between northwest India and Asia, Nature, 373,
55–58, 1995.
Biswas, S., Coutand, I., Grujic, D., Hager, C., Stöckli, D., and
Grasemann, B.: Exhumation and the uplift of the Shillong plateau and its
influence on the eastern Himalayas: new constraints from apatite and zircon
(U-Th-[Sm])/He and apatite fission track analyses, Tectonics, 26, TC6013, https://doi.org/10.1029/2007TC002125, 2007.
BouDagher-Fadel, M. K. and Price, G. D.: The Paleogeographic evolution of
the orthophragminids of the Paleogene, J. Foramin. Res., 47, 337–357, 2017.
BouDagher-Fadel, M. K., Price, G. D., Hu, X., and Li, J.: Late Cretaceous to
early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a
pan-Tethyan foraminiferal correlation scheme, Stratigraphy, 12, 67–91,
2015.
Checchia-Rispoli, G.: Nota preventiva sulla serie nummulitica dei dintorni di Bagheria
e di Termini-Imerese in prov. di Palermo, Giornale di Scienze Naturali ed Economiche, 26, 1–35, 1908.
Douvillé, H.: Révision des Orbitoïdes. Deuxième partie: Les
Orthophragmina du Danien et de l'Éocène, B. Soc. Geol. Fr., 22,
55–100, 1922.
Drobne, K.: Alvéolines paléogenes de la Slovénie et de l'Istrie,
Schweizerische Paläontologische Abhandlungen, 99, 1–175, 1977.
Drobne, K., Bartol, M., Premec-Fuček, V., Schenk, B., Ćosović,
V., and Pugliese, N.: Microfauna and nannoplankton below the
Paleocene/Eocene transition in hemipelagic sediments at the southern slope
of Mt. Nanos (NW part of the Paleogene Adriatic carbonate platform,
Slovenia), Austrian J. Earth Sc., 105/1, 208–223, 2012.
Drobne, K., Jež, J., Ćosović, V., Ogorelec, B., Stenni, B.,
Zakrevskaya, E., and Hottinger, L.: Identification of the Paleocene-Eocene
boundary based on larger foraminifers on the Paleogene Adriatic carbonate
platform (PgAdCP) (section Sopada, Vrhpolje, SW Slovenia), in: STRATI 2013, edited by: Rocha, R., Pais, J., Kullberg, J. C., and Finney, S.,
Springer Geology, Cham, Switzerland, 89–94, 2014.
Dutta, S. K. and Jain, K. P.: Geology and palynology of the area around
Lumshnong, Jaintia Hills, Meghalaya, India, Biological Memoirs, 5, 56–81,
1980.
Ferràndez-Cañadell, C.: A new, ribbed species of Nemkovella 1987
(Discocyclinidae), and discussion on the genus Actinocyclina Gümbel, 1870., J.
Foramin. Res., 27, 175–185, 1997.
Ferràndez-Cañadell, C.: Morphostructure and paleobiology of Mesogean
orthophragminids (Discocyclinidae and Orbitoclypeidae, Foraminifera), Acta
Geologica Hispanica, 31, 183–187, 1998.
Ferràndez-Cañadell, C.: New Paleocene orbitoidiform foraminifera
from the Punjab Salt Range, Pakistan, J. Foramin. Res., 32, 1–21, 2002.
Ferràndez-Cañadell, C.: The foraminiferal genus Lakadongia Matsumaru and
Jauhri 2003, a re-evaluation, Micropaleontology, 50, 397–400, 2004.
Garg, R. and Khowaja-Ateequzzaman, S.: Dinoflagellate cysts from the
Lakadong sandstone, Cherrapunji area: biostratigraphical and
paleoenvironmental significance and relevance to the sea level changes in
the Upper Palaeocene of the Khasi Hills, South Shillong Plateau, India,
Palaeobotanist, 49, 461–484, 2000.
Garzanti, E., Baud, A., and Mascle, G.: Sedimentary record of the northward
flight of India and its collision with Eurasia (Ladakh Himalaya, India),
Geodin. Acta, 1, 297–312, 1987.
Gogoi, B., Kalita, K. D., Garg, R., and Borgohain, R.: Foraminiferal
biostratigraphy and palaeoenvironment of the Lakadong Limestone of the
Mawsynram area, south Shillong Plateau, Meghalaya, J. Palaeontol. Soc. Ind.,
54, 209–224, 2009.
Govindan, A.: Larger foraminiferal biostratigraphy of Early Paleogene
sections in India, Geological Society of India, Special Publication, 1,
24–45, 2013.
Green, O. R., Searle, M. P., Corfield, R. I., and Corfield, R. M.:
Cretaceous-Tertiary carbonate platform evolution and age of the India-Asia
collision along the Ladakh Himalaya (northwest India), J. Geol., 116,
331–353, 2008.
Grigoryan, S. M.: Nummulitidy i orbitoidy
Armânskoj SSR, Akademiâ Nauk Armânskoj SSR, Erevan, 216 pp.,
1986.
Gümbel, C. W.: Beiträge zur Foraminiferenfauna der nordalpinen
Eozängebilde oder der Kressenberger Nummuliten Schichten, Abhandlungen
der Matematisch-Physikalischen Classe der Königlich Bayerischen Akademie
der Wissenschaften, 10, 581–720, 1870.
Hottinger, L.: Recherches sur les Alvéolines du Paléocène et de
l'Eocène, Schweizerische Paläontologische Abhandlungen, 75/76,
1–243, 1960.
Hottinger, L.: Paleogene larger rotaliid foraminifera from the western
and central Neotethys, Springer, Switzerland, 196 p., 2014.
Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., and Webb, A.: The timing
of India-Asia collision onset – Facts, theories, controversies, Earth-Sci.
Rev., 160, 264–299, 2016.
Hu, Y., Zhang, B., Hu, L. Y., and Sheng, J. C.: Mesozoic and Cenozoic
foraminifera from the Mount Jolmo Lungma region, in: Scientific
investigation to the Mount Jolmo Lungma region (1966–1968), Paleontology,
Scientific Publishing House, China, 1–76, 1976 (in Chinese).
Huber, J. H.: Non-availability of a name electronically published: the case
of Adamas Huber, 1979 (Pisces, Cyprinodontiformes, Nothobranchiidae), invalidly
replaced on the Internet, Zoosystema, 29, 209–214, 2007.
ICZN: International Code of Zoological Nomenclature, Fourth Edition,
The International Trust for Zoological Nomenclature, London, xxix+306 p., 1999.
ICZN: Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and
refine methods of publication, Bulletin of Zoological Nomenclature, 69,
161–169, 2012.
Jauhri, A. K.: Carbonate buildup in the Lakadong Formation of the south
Shillong plateau, NE India: a micropaleontological perspective, in: Studies on ecology and
paleontology of bentic communities, edited by:
Matteucci, R., Carboni, M. G., and Pignatti J., Bollettino della Società
Paleontologica Italiana, 2, 157–169, 1994.
Jauhri, A. K.: Miscellanea Pfender, 1935 (Foraminiferida) from the south Shillong
region, NE India, J. Palaeontol. Soc. Ind., 43, 73–83, 1998.
Jauhri, A. K. and Agarwal, K. K.: Early Palaeogene in the south Shillong
Plateau, NE India: local biostratigraphic signal of the global tectonic and
oceanic changes, Palaeogeogr. Palaeocl., 168, 187–203, 2001.
Jauhri, A. K., Misra, P. K., Kishore, S., and Singh, S. K.: Larger
foraminiferal and calcareous algal facies in the Lakadong Formation of the
south Shillong Plateau, NE India, J. Palaeontol. Soc. Ind., 51, 51–61,
2006.
Jiang, T., Aitchison, J. C., and Wan, X.: The youngest marine deposits
preserved in southern Tibet and disappearance of the Tethyan Ocean, Gondwana
Res., 32, 4–75, 2015.
Koley, T. and Wanjarwadkar, K. M.: First report of Ranikothalia Caudri from Middle
Andaman Island, India and its significance, J. Geol. Soc. India, 81,
549–555, 2013.
Less, G.: Paleontology and stratigraphy of the European
Orthophragminae, Geologica Hungarica series Palaeontologica, 51, 1–373, 1987.
Less, G.: Zonation of the Mediterranean Upper Paleocene and Eocene by
Orthophragminae, Opera Dela Slovenska Akademija Znanosti in Umetnosti, 34, 21–43, 1998.
Less, G. and Kovács, Ó, L: Typological versus morphometric separation
of orthophragminid species in single samples – a case study from Horsarrieu
(upper Ypresian, SW Aquitaine, France), Revue de Micropaléontologie, 52,
267–288, 2008.
Less, G., Özcan, E., Báldi-Beke, M., and Kollányi, K.:
Thanetian and early Ypresian orthophragmines (Foraminifera: Discocyclinidae
and Orbitoclypeidae) from the central Western Tethys (Turkey, Italy and
Bulgaria) and their revised taxonomy and biostratigraphy, Riv Ital. di
Paleontol S., 113, 419–448, 2007.
Li, J., Hu, X., Garzanti, E., and BouDagher-Fadel, M.: Shallow-water
carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan
Himalaya (southern Tibet): Tectonic and climatic implications, Palaeogeogr.
Palaeocl., 466, 153–165, 2017.
Mathur, N. S.: Biostratigraphical aspects of the Subathu Formation, Kumaun
Himalayas, Rec. Res. Geol., 5, 96–112, 1978.
Matsumaru, K. and Jauhri, A. K.: Lakadongia, a new orbitoidal foraminiferal genus from
the Thanetian (Paleocene) of Meghalaya, NE India, Micropaleontology, 49,
277–291, 2003.
Matsumaru, K. and Sarma, A.: Larger foraminiferal biostratigraphy of the
lower Tertiary of Jaintia Hills, Meghalaya, NE India, Micropaleontology, 56,
539–565, 2010.
Nagappa, Y.: Foraminiferal biostratigraphy of the Cretaceous- Eocene
succession in the India-Pakistan-Burma region, Micropaleontology, 5,
145–192, 1959.
Najman, Y., Johnson, K., White, N., and Oliver, G.: Evolution of the
Himalayan foreland basin, NW India, Basin Res., 16, 1–24, 2004.
Najman, Y., Bracciali, L., Parrish, R. R., Chisty, E., and Copley, A.:
Evolving strain partitioning in the Eastern Himalaya: the growth of the
Shillong Plateau, Earth Planet. Sc. Lett., 433, 1–9, 2016.
Nebelsick, J. H., Rasser, M. W., and Bassi, D.: Facies dynamics in Eocene to
Oligocene circumalpine carbonates, Facies, 51, 197–216, 2005.
Neumann, M.: Révision des Orbitoididés du Crétacé et de
l'Eocène en Aquitaine occidentale, Mém. S. Géo. F., 83, 1–174,
1958.
Özcan, E., Sirel, E., Özkan-Altıner, S., and Çolakoğlu,
S.: Late Paleocene Orthophragminae (Foraminifera) from the
Haymana–Polatlı
Basin (Central Turkey) and description of a new taxon, Orbitoclypeus haymanaensis, Micropaleontology,
47, 339–357, 2001.
Özcan, E., Scheibner, C., and Boukhalfa, K.: Orthophragminids
(foraminifera) across the Paleocene/Eocene transition from North Africa:
taxonomy, biostratigraphy and paleobiogeographic implications, J. Foramin.
Res., 44, 203–229, 2014.
Özcan, E., Hanif, M., Ali, N., and Yücel, A. O.: Early Eocene
orthophragminids (foraminifera) from the type-locality of Discocyclina ranikotensis Davies, 1927,
Thal, NW Himalayas, Pakistan: insights into the orthophragminid
paleobiogeography, Geodin. Acta, 27, 267–299, 2015.
Özcan, E., Abbasi, I. A., Drobne, K., Govindan, A., Jovane, L., and
Boukhalfa, K.: Early Eocene orthophragminids and alveolinids from the
Jafnayn Formation, N Oman: significance of Nemkovella stockari Less & Özcan, 2007 in
Tethys, Geodin. Acta, 28, 160–184, 2016a.
Özcan, E., Saraswati, P. K., Hanif, M., and Ali, N.: Orthophragminids
with new axial thickening structures from the Bartonian of the Indian
subcontinent, Geol. Acta, 14, 261–282, 2016b.
Özdikmen, H.: Substitute names for some unicellular animal taxa
(Protozoa), Munis Entomology Zoology, 4, 233–256, 2009.
Papazzoni, C. A., Ćosović, V., Briguglio, A., and Drobne, K.:
Towards a calibrated larger foraminifera biostratigraphic zonation:
celebrating 18 years of the application of shallow benthic zones, Palaios,
32, 1–5, 2017.
Prasad, V., Garg, R., Ateequzzaman, K., Sing, I. B., and Joachimski, M. M.:
Apectodinium acme and palynofacies characteristics in the latest Palaeocene-earliest
Eocene of northeastern India: biotic response to the Palaeocene-Eocene
Thermal Maxima (PETM) in low latitude, J. Palaeontol. Soc. Ind., 51, 75–91,
2006.
Samanta, B. K.: Discocyclina from the early Tertiary sediments of Pondicherry, south
India, Micropaleontology, 13, 233–242, 1967.
Samanta, B. K.: Foraminiferal genus Ranikothalia Caudri from the Pondicherry Formation,
Pondicherry South India, Quarterly Journal of the Mining and Metallurgical
Society of India, 4, 121–133, 1980.
Samuel, O., Borza, K., and Köhler, E.: Microfauna and
lithostratigraphy of the Paleogene and adjacent Cretaceous of the Váh
valley (west Carpathian), Geologický Ústav Dionýza Stúra,
Bratislava, 246 p., 1972.
Schlumberger, C.: Troisième note sur les Orbitoïdes, B. Soc. Geol.
Fr., 4, 273–289, 1903.
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferràndez, C.,
Jauhri, A. K., Less, G., Pavlovec, R., Pignatti, J., Samsó, J. M.,
Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J., and
Zakrevskaya, E.: Larger foraminiferal biostratigraphy of the Tethyan
Paleocene and Eocene, B. Soc. Geol. Fr., 169, 281–299, 1998.
Singh, M. P. and Singh, A. K.: Petrographic characteristics and depositional
conditions of Eocene coals of platform basins, Meghalaya, India, Int. J.
Coal Geol., 42, 315–356, 2000.
Srivastava, J. and Prasad, V.: Effect of global warming on diversity pattern
in Nypa mangroves across Paleocene-Eocene transition in the paleo-equatorial
region of the Indian sub-continent, Palaeogeogr. Palaeocl., 429, 1–12, 2015.
Tewari, V. C., Kumar, K., Lokho, K., and Siddaiah, N. S.: Lakadong
limestone: Paleocene-Eocene boundary carbonate sedimentation in Meghalaya,
northeastern India, Curr. Sci. India, 98, 88–95, 2010.
Toumarkine, M.: Une nouvellee espèce d 'Orthophragmine de l'Eocene Marin du Mont-Cayla (Aude):
Discocyclina neumannae, Rev. de Micropaléontologie, 10, 209–214, 1967.
Valet, G.: Approche paléoécologique du monde des Dasycladales a
partir de l'écologie des formes actuelles, B. Cent. Rech. Expl., 3/2, 859–866, 1979.
Wan, X.: Palaeocene larger foraminifera from southern Tibet, Rev. Esp.
Micropal., 23, 7–28, 1991.
Wan, X., Wang, X., and Jansa, L. F.: Biostratigraphy of a Paleocene-Eocene
Foreland Basin boundary in southern Tibet, Geosci. Front., 1, 69–79, 2010.
Warwick, P. D., Johnson, E. A., and Khan, I. H.: Collision-induced tectonism
along the northwest margin of the Indian subcontinent as recorded in the
Upper Paleocene to Middle Eocene strata of central Pakistan (Kirthar and
Sulaiman Ranges), Palaeogeogr. Palaeocl., 142, 201–216, 1998.
Willems, H., Zhou, Z., Zhang, B., and Gräfe, K. U.: Stratigraphy of the
Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet
(Tingri area, China), Geol. Rundsch, 85, 723–754, 1996.
Wilson, G. E. and Metre, W. B.: Assam and Arakan, in:
World's Oil Field: The Eastern Hemisphere: The Science of Petroleum, edited by: Illing, V. C., 6,
119–123, Oxford University Press, London, 1953.
Yin, A., Dubey, C. S., Webb, A. A. G., Kelty, T. K., Grove, M., Gehrels, G.
E., and Burgess, W. P.: Geological correlation of the Himalayan orogen and
Indian craton: Part 1. Structural geology, U-Pb zircon geochronology, and
tectonic evolution of the Shillong Plateau and neighboring regions in NE
India, Geol. Soc. Am. Bull., 122, 336–359, 2010.
Zakrevskaya, E. Y.: The late Paleocene species Discocyclina seunesi Douvillé in
Eastern Crimea, in: Paleontological investigations in
Ukraine. Sbornik nauchnyh trudov IGN NAN Ukrainy, edited by: Gozhyk, P. F., Kiev, 228–232, 2007 (in
Russian with English abstract).
Zernetskii, B. F.: First Discocyclina found in the Paleocene of Crimea, Materials
on Cenozoic Paleontology of the Ukraine, Naukova Dumka, Kiev, 55–59, 1977.
Zhang, Q., Willems, H., Ding, L., Grafe K., and Appel, E.: Initial
India-Asia collision and foreland basin evolution in the Tethyan Himalaya of
Tibet: Evidence from stratigraphy and paleontology, J. Geol., 120, 175–189,
2012.
Zhang, Q., Willems, H., and Ding, L.: Evolution of the Paleocene-Early
Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China,
Int. J. Earth Sci., 102, 1427–1445, 2013.
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry...