Articles | Volume 38, issue 2
https://doi.org/10.5194/jm-38-189-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-38-189-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Dana Ridha
Earth Sciences, School of Geography, Earth and Environmental Sciences,
University of Birmingham, Edgbaston, B15 2TT, UK
Earth Sciences, School of Geography, Earth and Environmental Sciences,
University of Birmingham, Edgbaston, B15 2TT, UK
Kirsty M. Edgar
Earth Sciences, School of Geography, Earth and Environmental Sciences,
University of Birmingham, Edgbaston, B15 2TT, UK
Related authors
No articles found.
Kirsty Marie Edgar, Maria Grigoratou, Fanny Monteiro, Ruby Barrett, Rui Ying, and Daniela Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3295, https://doi.org/10.5194/egusphere-2024-3295, 2024
Short summary
Short summary
Planktic foraminifera are microscopic marine organisms whose calcium carbonate shells provide valuable insights into past ocean conditions. A promising means of understanding foraminiferal ecology and their environmental interactions is to constrain their key functional traits relating to feeding, symbioses, motility, calcification and reproduction. Here we review what we know of their functional traits, key gaps in our understanding and suggestions on how to fill them.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Ian Boomer, Peter Frenzel, and Martin Feike
J. Micropalaeontol., 36, 63–69, https://doi.org/10.1144/jmpaleo2015-043, https://doi.org/10.1144/jmpaleo2015-043, 2017
Ian Boomer and Ben Gearey
J. Micropalaeontol., 29, 115–118, https://doi.org/10.1144/0262-821X09-011, https://doi.org/10.1144/0262-821X09-011, 2010
Ian Boomer, Francois Guichard, and Gilles Lericolais
J. Micropalaeontol., 29, 119–133, https://doi.org/10.1144/0262-821X10-003, https://doi.org/10.1144/0262-821X10-003, 2010
I. Boomer, A. R. Lord, K. N. Page, P. R. Bown, F. M. D. Lowry, and J. B. Riding
J. Micropalaeontol., 28, 67–85, https://doi.org/10.1144/jm.28.1.67, https://doi.org/10.1144/jm.28.1.67, 2009
Related subject area
Benthic foraminifera
Miocene Climatic Optimum and Middle Miocene Climate Transition: a foraminiferal record from the central Ross Sea, Antarctica
Distribution of two notodendrodid foraminiferal congeners in McMurdo Sound, Antarctica: an example of extreme regional endemism?
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Alve, E. and Murray, J. W.: Temporal variability in vertical distributions
of live (stained) intertidal foraminifera, southern England, J.
Foramin. Res., 31, 12–24, 2001.
Amakrane, J., Azdimousa, A., Rezqi, H., EL Hammouti, K., EL Ouahabi, M., and
Fagel, N.: Paleoenvironment and sequence stratigraphy of the late Miocene
from the Guercif basin (Northeastern of Morocco), Bulletin de l'Institut
Scientifique, 38, 95–110, 2016.
Andersen, H. V.: Foraminifera of the mudlumps, lower Mississippi River
Delta, in: Genesis and Paleontology of the Mississippi River Mudlumps,
Louisiana Geol. Survey, Geol. Bull, 35, 1–208, 1961.
Asano, K. J.: Miocene foraminifera from the Noto Peninsula, Ishikawa
Prefecture, Tohoku University, Institute of Geological Paleontology Short
Papers, 5, 1–21, 1953.
Baldi, K. and Hohenegger, J.: Paleoecology of benthic foraminifera of the
Baden-Sooss section (Badenian, Middle Miocene, Vienna Basin, Austria), Geol.
Carpathica, 59, 411–424, 2008.
Barker, W. R.: Taxonomic Notes on the species figured by H.B. Brady in his
report on the foraminifera dredged by HMS Challenger during the years
1873–1876, Society of Economic Paleontologists Mineralogists, Special
Publication, 9, 1–238, 1960.
Batsch, A. I. G. C.: Sechs Kupfertafeln mit Conchylien des Seesandes, gezeichnet und gestochen von AJGK Batsch, University Press, Jena, 6 plates, 1791.
Bergamin, L., Carboni, G., and Bella, L.: Melonis pompilioides (Fichtel &
Moll) and Melonis barleeanus (Williamson) from Pliocene, Pleistocene and
Holocene sediments of Central Italy, Geologica Romana, Roma, 29–45 pp., 1997.
Bermúdez, P. J.: Tertiary smaller foraminifera of the Dominican
Republic, Cushman Laboratory for Foraminiferal Research, 25, 1–322, 1949.
Bermúdez, P. J. J. B. D. G., Venezuela: Estudio sistematico de los
Foraminiferos Rotaliformes, Boletin de Geologia, Venezuela, 2, 1–230, 1952.
Boersma, A.: Biostratigraphy and biogeography of Tertiary bathyal benthic
foraminifers: Tasman Sea, Coral Sea, and on the Chatham Rise (Deep Sea
Drilling Project, Leg 90), Initial reports of the deep sea drilling project,
90, 961–1035, 1986.
Boersma, A.: Late Oligocene to late Pliocene benthic foraminifers from depth
traverses in the central Indian Ocean, edited by: Duncan, R. A., Backman, J.,
Peterson, L. C., et al., College Station, TX (Ocean Drilling Program),
315–379, 1990.
Boltovskoy, E.: Late Cenozoic benthonic foraminifera of the Ninetyeast Ridge
(Indian Ocean), Elsevier Oceanography Series, 21, 139–175, 1978.
Boltovskoy, E. and de Kahn, G. G.: Cinco nuevos taxones en Orden
Foraminiferida, Comunicaciones des Museo Argentino de Ciencias Naturales
“Bernardino Rivadavia” e Instituto Nacional de investigación de las
Ciencias Naturales, Hydrobiologia, 2, 43–51, 1981.
Boomgaart, L.: Smaller Foraminifera from Bodjonegoro (Java): Smit and
Dontje, 1–175, 1949.
Brady, H. B.: Notes on some of the reticularian Rhizopoda of the Challenger
Expedition, Part III, Q. J. Microsc. Sci., 21, 31–71, 1881.
Brady, H. B.: Report on the scientific results of the voyage of the HMS
Challenger during the years 1873–1876, Report on the foraminifera dredged by
HMS Challenger during the years 1873–1876, Zoology, 9, 1–814, 1884.
Brady, H. B., Parker, W. K., and Jones, T. R.: XI. On some Foraminifera from
the Abrohlos Bank, The Transactions of the Zoological Society of London, 12,
211–239, 1888.
Brotzen, F.: Flintrännans och trindelrännans geologi (Öresund):
Zusammenfassung, Die Geologie der Flint-und Trindelrinne (Öresund),
Norstedt, 34, 1–33, 1940.
Brotzen, F.: Die Foraminiferengattung Gavelinella nov. gen. und die Systematik der Rotaliiformes. Årsbok Sveriges Geologiska Undersokning, Sweden, 36, 1–60, 1942.
Carpenter, W. B., Parker, W. K., and Jones, T. R.: Introduction to the study
of the Foraminifera, Ray society, London, 436 pp., 1862.
Chapman, F., Parr, W. J., and Collins, A. C.: Tertiary foraminifera of
Victoria, Australia-The Balcombian deposits of Port Phillip, Part lll,
Journal of the Linnean Society of London, Zoology, 38, 553–577, 1934.
Corliss, B. H.: Taxonomy of Recent deep- sea benthonic foraminifera from the
Southeast Indian Ocean, Micropaleontology, 25, 1–19, 1979.
Cushman, J. A.: A monograph of the foraminifera of the North Pacific Ocean.
Part 2. Textulariidae, Bulletin of the United States National Museum, 71,
1–108, 1911.
Cushman, J. A.: The foraminifera of the Atlantic Ocean. Part 3.
Textulariidae, Bulletin of the United States National Museum, 104, 1–149,
1922.
Cushman, J. A.: The foraminifera of the Atlantic Ocean. Part 4. Lagenidae,
Bulletin of the United States National Museum, 104, 1–228, 1923.
Cushman, J. A.: Some new foraminifera from the Velasco Shale of Mexico,
Contributions from the Cushman Laboratory for Foraminiferal Research, 1,
18–23, 1925.
Cushman, J. A.: An outline of a reclassification of foraminifera,
Contributions from the Cushman laboratory for foraminiferal research, 3,
1–05, 1927.
Cushman, J. A.: The foraminifera of the Atlantic Ocean, Part 7. Nonionidae,
Camerinidae, Peneroplidae and Alveolinellidae, Bulletin of the United States
National Museum, 104, 1–79, 1930.
Cushman, J. A.: Some new foraminiferal genera, Contributions from the
Cushman Laboratory for Foraminiferal Research, 9, 32–38, 1933a.
Cushman, J. A.: Some new Recent foraminifera from the tropical Pacific,
Contributions from the Cushman Laboratory for Foraminiferal Research, 9,
77–95, 1933b.
Cushman, J. A.: Smaller foraminifera from Vitilevu, Fiji, Bulletin of
Bernice P. Bishop Museum, 119, 102–142, 1934.
Cushman, J. A.: A monograph of the foraminiferal family Valvulinidae.
Special Publications, Cushman Laboratory for Foraminiferal Research, 8,
1–210, 1937.
Cushman, J. A.: Some new foraminifera from the Tertiary of the Island of St.
Croix, Contributions from the Cushman Laboratory for Foraminiferal Research,
19, 90–93, 1943.
Cushman, J. A. and Applin, E. R.: Texas Jackson foraminifera, AAPG
Bulletin, 10, 154–189, 1926.
Cushman, J. A. and Bermúdez, P. J.: New genera and species of foraminifera
from the Eocene of Cuba, Contributions from the Cushman Laboratory for
Foraminiferal Research, 12, 27–38, 1936.
Cushman, J. A. and Edwards, P. G.: Astrononion a new genus of the
foraminifera, and its species, Contributions from the Cushman laboratory for
foraminiferal research, 13, 29–36, 1937.
Cushman, J. A. and Edwards, P. G.: Notes on the Oligocene species of
Uvigerina and Angulogerina, Contributions from the Cushman Laboratory for
Foraminiferal Research, 14, 74–89, 1938.
Cushman, J. A. and Jarvis, P. W.: Some interesting new uniserial
foraminifera from Trinidad, Contributions from the Cushman Laboratory for
Foraminiferal Research, 10, 71–75, 1934.
Cushman, J. A. and Moyer, D. A.: Some recent foraminifera from off San
Pedro, California, Contributions from the Cushman Laboratory for
Foraminiferal Research, 6, 49–62, 1930.
Cushman, J. A. and Parker, F. L.: Bulimina and related foraminiferal
genera, Professional Paper of the United States Geological Survey, 210-D,
55–176, 1947.
Cushman, J. A. and Todd, R.: The Recent and fossil species of Laticarinina,
Contributions from the Cushman Laboratory for Foraminiferal Research, 18,
14–20, 1942.
Cushman, J. A. and Todd, R.: Miocene foraminifera from Buff Bay, Jamaica,
Cushman Laboratory for Foraminiferal Research, Special Publication, 15, 1–73,
1945.
Cushman, J. A. and Todd, R.: The genus Sphaeroidina and its species,
Contributions from the Cushman Laboratory for Foraminiferal Research, 25,
11–21, 1949.
Czjzek, J.: Beitrag zur Kenntniss der fossilen Foraminiferen des Wiener
Beckens, Naturwissenschaftliche Abhadlungen, Wien, 2, 137–150, 1848.
Debenay, J. P.: A guide to 1,000 foraminifera from Southwestern Pacific: New
Caledonia, IRD Editions, Paris, 386 pp., 2012.
De Man, E., Van Simaeys, S., De Meuter, F., King, C., and Steurbaut, E.:
Oligocene benthic foraminiferal zonation for the southern North Sea Basin,
Bulletin de l'Institut Royal des Sciences Naturelles de
Belgique, Sciences de la Terre, 74, 177–195, 2004.
de Montfort, P. D.: Conchyliologie systématique et classification
méthodique des coquilles, F. Schoell, Paris, 1808.
Deshayes, G. P.: Les mollusques [in] Cuvier, Le Règne Animal
distribué d'après son organisation, pour servir de base à
l'histoire naturelle des animaux et d'introduction à l'anatomie
comparée, ed. 2, available at:
https://archive.org/stream/lesmollusquesave00desh#page/34/ (last access: 2 July 2019), 310 pp., 1828.
d'Orbigny, A. D.: Tableau méthodique de la classe des Céphalopodes,
Annales des Sciences Naturelles 7, 245–314, 1826.
d'Orbigny, A. D.: Foraminifères, in: Histoire physique, politique et
naturelle de l'île de Cuba, edited by: Sagra, R. D. L., A. Bertrand,
Paris, 1–224, 1839a.
d'Orbigny, A. D.: Voyage dans l'Amérique méridionale:
foraminifères, P. Bertrand, Paris and Strasbourg, 86 pp., 1839c.
d'Orbigny, A. D.: Foraminiferes fossiles du Bassin Tertiaire de Vienne
(Autriche) 2, Paris: Gide et Camp, 312 pp., 1846.
d'Orbigny, A. D.: Prodrome de paléontologie stratigraphique universelle
des animaux mollusques & rayonnés, faisant suite au Cours
élémentaire de paléontologie et de géologie
stratigraphiques, V. Masson, Paris, 394 pp., 1849–1852.
Eade, J. V.: New Zealand Recent foraminifera of the families Islandiellidae
and Cassidulinidae, New Zealand Journal of Marine Freshwater Research, 1,
421–454, 1967.
Earland, A.: Foraminifera. Part III. The Falklands sector of the Antarctic
(excluding South Georgia), Discovery Reports, University Press, Cambridge,
1–208, 1934.
Ehrenberg, C. G.: Über dem blossen Auge unsichtbare Kalkthierchen und
Kieselthierchen als Hauptbestandtheile der Kreidegebirge, Bericht über
die zu Bekanntmachung geeigneten Verhandlungen der Königlichen
Preussischen Akademie der Wissenschaften zu Berlin, 192–200, 1838.
Fichtel, L. and Moll, J. P. C.: Testacea Microscopica aliaque Minuta ex
Generibus Argonauta et Nautilus ad Naturam Delineat et Descripta, Anton Pichler, Camesina, Vienna,
123 pp., 1798.
Finlay, H. J.: New Zealand foraminifera: key species in stratigraphy – no.
1, T. Roy. Soc. NZ, 68, 504–543, 1939.
Finlay, H. J.: New Zealand foraminifera: key species in stratigraphy – no. 4,
T. Roy. Soc. NZ, 69, 448–472, 1940.
Finlay, H. J.: New Zealand Foraminifera: Key Species in Stratigraphy – no.
5, New Zealand Journal of Science And Technology, 28, 259–292, 1947.
Flower, B. and Kennett, J.: Middle Miocene ocean-climate transition:
High-resolution oxygen and carbon isotopic records from Deep Sea Drilling
Project Site 588A, southwest Pacific, Paleoceanography and Paleoclimatology,
8, 811–843, 1993.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition:
East Antarctic ice sheet development, deep ocean circulation and global
carbon cycling, Palaeogeogr. Palaeocl., 108,
537–555, https://doi.org/10.1016/0031-0182(94)90251-8, 1994.
Flower, B. P. and Kennett, J. P.: Middle Miocene deepwater paleoceanography
in the southwest Pacific: relations with East Antarctic Ice Sheet
development, Paleoceanography, 10, 1095–1112, 1995.
Fornasini, C.: Contributo a la conoscenza de le Bulimine adriatiche, Memorie
della Reale Accademia delle Scienze dell'Istituto di Bologna, 9, 371–382,
1902.
Fursenko, A.: Osnovnye etapy razvitiya faun foraminifer v geologicheskom
proshlom, Trudy Instituta Geologicheskikh Nauk, Akademiia Nauk Belorusskoi
SSR, 1, 10–29, 1958.
Galloway, J. J.: A manual of Foraminifera, Principia press, Bloomington, 483
pp., 1933.
Galloway, J. J. and Wissler, S. G.: Correction of names of foraminifera,
J. Paleontol., 1, 193–193, 1927.
Glaessner, M. F.: Die Entfaltung der Foraminiferenfamilie Buliminidae,
Problemy Paleontologii, Paleontologicheskaya Laboratoriya Moskovskogo
Gosudarstvennogo Universiteta, 2, 411–413, 1937.
Griffith, J. W. and Henfrey, A.: The micrographic dictionary: a guide to
the examination and investigation of the structure and nature of microscopic
objects, J. Van Voorst, London, 845 pp., 1875.
Guérin-Méneville, F. E.: Iconographie du règne animal de G.
Cuvier: ou, Représentation d'après nature de l'une des espèces
les plus et souvent non encore figurées de chaque genre d'animaux,
Paris, London, 48 pp., 1829–1844.
Gümbel, C. W.: Beiträge zur Foraminiferenfauna der nordalpinen,
älteren Eocängebilde oder der Kressenberger Nummulitenschichten,
Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich
Bayerischen Akademie der Wissenschaften, 10, 581–730, 1868.
Guppy, R. J. L.: On some Foraminifera from the Microzoic deposits of
Trinidad, West Indies, P. Zool. Soc. Lond., 4,
647–653, 1894.
Gupta, A. K.: Biostratigraphic vs. paleoceanographic importance of
Stilostomella lepidula (Schwager) in the Indian Ocean, Micropaleontology,
47–51, 1993.
Gupta, A. K. and Satapathy, S.: Latest Miocene–Pleistocene abyssal benthic
foraminifera from west-central Indian Ocean DSDP Site 236: Paleoceanographic
and paleoclimatic inferences, Journal of Paleontological Society of India,
45, 33–48, 2000.
Gupta, A. K., Singh, R. K., Joseph, S., and Thomas, E.: Indian Ocean
high-productivity event (10–8 Ma): Linked to global cooling or to the
initiation of the Indian monsoons?, Geology, 32, 753–756, 2004.
Hadley, W. H.: Some Tertiary foraminifera from the north coast of Cuba,
Bulletin of American Paleontology, 20, 1–40, 1934.
Haeckel, E.: Systematische Phylogenie. Entwurf eines Natürlichen Systems
der Organismen auf Grund ihrer Stammesgeschichte. Theil l, Systematische
Phylogenie der Protisten und Pflanzen, Georg Reimer, Berlin, xv + 400 pp.,
1894.
Hanagata, S. and Nobuhara, T.: Illustrated guide to Pliocene foraminifera
from Miyakojima, Ryukyu Island Arc, with comments on biostratigraphy,
Palaeontologia Electronica, 18, 1–140, 2015.
Hantken, M. V.: Die fauna der Clavulina Szabói-Schichten. Theil I –
Foraminiferen, Kaiserlich Ungarische Anstalt, Mitteilungen, Jahrbuch, 4,
1–93, 1875.
Hayward, B. W.: Late Pliocene to middle Pleistocene extinctions of deep-sea
benthic foraminifera (“Stilostomella extinction”) in the southwest
Pacific, J. Foramin. Res., 32, 274–307, 2002.
Hayward, B. W. and Kawagata, S.: Extinct foraminifera figured in Brady's
Challenger Report, J. Micropalaeontol., 26, 171–175, 2005.
Hayward, B. W., Neil, H., Carter, R., Grenfell, H. R., and Hayward, J. J.:
Factors influencing the distribution patterns of Recent deep-sea benthic
foraminifera, east of New Zealand, Southwest Pacific Ocean, Mar.
Micropaleontol., 46, 139–176,
https://doi.org/10.1016/S0377-8398(02)00047-6, 2002.
Hayward, B. W., Grenfell, H. R., Sabaa, A., and Hayward, J. J.: Recent
benthic foraminifera from offshore Taranaki, New Zealand, New Zealand
J. Geolo. Geophys., 46, 489–518, 2003.
Hayward, B. W., Kawagata, S., Grenfell, H. R., Sabaa, A. T., and O'Neill, T.:
Last global extinction in the deep sea during the mid-Pleistocene climate
transition, Paleoceanography 22, PA3103, https://doi.org/10.1029/2007PA001424, 2007.
Hayward, B. W., Sabaa, A. T., Thomas, E., Kawagata, S., Nomura, R.,
Schröder-Adams, C., Gupta, A. K., and Johnson, K.:
Cenozoic record of elongate, cylindrical, deep-sea benthic foraminifera in
the Indian Ocean (ODP Sites 722, 738, 744, 758, and 763), J. Foramin. Res., 40, 113–133, 2010.
Hayward, B. W., Kawagata, S., Sabaa, A., Grenfell, H., Kerckhoven, L. V.,
Lewandowski, K., and Thomas, E.: The last global extinction (Mid-Pleistocene) of
deep sea benthic foraminifera (Chrysalogoniidae, Ellipsoidinidae,
Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae,
Stilostomellidae), their Late Cretaceous-Cenozoic history and taxonomy, Cushman Foundation for Foraminiferal Research, Special Publication, Allen Press, Lawrence, USA, 408
pp., 2012.
Hayward, B. W., Sabaa, A., Grenfell, H., Neil, H., and Bostock, H.:
Ecological distribution of Recent deep-water foraminifera around New
Zealand, J. Foramin. Res., 43, 415–442, https://doi.org/10.2113/gsjfr.43.4.415, 2013.
Hayward, B. W., Le Coze, F., Vachard, D., and Gross, O.: World Foraminifera
Database, Bulimina alazanensis Cushman, 1927, available at:
http://www.marinespecies.org/foraminifera/aphia.php?p=taxdetails&id=113032, last access: 7 July 2019a.
Hayward, B. W., Le Coze, F., Vachard, D., and Gross, O.: World Foraminifera
Database. Hansenisca soldanii (d'Orbigny, 1826),World Register of Marine Species, available at:
http://www.marinespecies.org/aphia.php?p=taxdetails&id=113418, last access: 7 July 2019b.
Hayward, B. W., Le Coze, F., Vachard, D., and Gross, O.: World Foraminifera
Database. Gavelinopsis praegeri (Heron-Allen & Earland, 1913), World Register of Marine Species,
available at:
http://www.marinespecies.org/aphia.php?p=taxdetails&id=113159, last access: 7 July 2019c.
Hayward, B. W., Le Coze, F., Vachard, D., and Gross, O.: World Foraminifera
Database. Heterolepa bradyi (Trauth, 1918), World
Register of Marine Species, available at:
http://www.marinespecies.org/aphia.php?p=taxdetails&id=736954, last access: 7 July 2019d.
Hermelin, J.: The benthic foraminiferal faunas of sites 725, 726, and 728
(Oman Margin, northwestern Arabian Sea), Proceedings of the Ocean Drilling
Program. Scientific Results, 117, 55–87, 1991.
Hermoyian, C. S. and Owen, R. M.: Late Miocene‐early Pliocene biogenic bloom: Evidence from low‐productivity regions of the Indian and Atlantic Oceans, Paleoceanography, 16, 95–100, 2001.
Heron-Allen, E. and Earland, A.: Clare Island survey Foraminifera:
P. Roy. Irish Acad., 31, 1–188, 1913.
Hewaidy, A. G. A., Sallam, M. M., and Khalifa, M. F.: Miocene calcareous
foraminifera of the Nile delta area, Egypt, Egypt. J. Paleontol., 13,
121–171, 2013.
Hilgen, F. J., Lourens, L. J., Van Dam, J. A., Beu, A. G., Boyes, A. F.,
Cooper, R. A., Krijgsman, W., Ogg, J. G., Piller, W. E., and Wilson, D. S.:
Chapter 29 – The Neogene Period, in: The Geologic Time Scale, edited by:
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier,
Boston, 923–978, 2012.
Hofker, J.: The foraminifera of the Siboga expedition. Part III
Siboga-Expeditie, Monographie, IVa, 1–513, 1951.
Hofker, J.: Über die Familie Epistomariidae (Foram.), Palaeontographica
Abteilung A, A105, 166–206, 1954.
Hofker, J.: Tertiary foraminifera of coastal Ecuador: Part II, Additional
notes on the Eocene species, J. Paleontol., 30, 891–958, 1956.
Holbourn, A., Henderson, A., and Macleod, N.: Atlas of Benthic Foraminifera,
John Wiley & Sons, Natural History Museum, Chichester, UK, 642 pp., 2013.
Howe, H. V.: Louisiana Cook Mountain Eocene Foraminifera, Bulletin of the
Geological Survey of Louisiana, 14, 1–122, 1939.
Husezima, R. and Maruhasi, M.: A new genus and thirteen new species of
foraminifera from the core-sample of Kashiwazaki oil field, Niigata-ken,
Journal of the Sigenkagaku Kenkyusho, 1, 391–400, 1944.
Jones, R. W.: The Challenger Foraminifera, Oxford University Press, Oxford,
149 pp., 1994.
Jones, T. R.: The micrographic dictionary; a guide to the examination and
investigation of the structure and nature of microscopic objects, edited
by: Griffith, J. W. and Henfrey, A., London, 316–320, 1875.
Jones, T. R. and Parker, W. K.: On the rhizopodal fauna of the
Mediterranean, compared with that of the Italian and some other Tertiary
deposits, Quarterly Journal of the Geological Society, 16, 292–307, 1860.
Kaiho, K.: Eocene to Quaternary benthic foraminifers and paleobathymetry of
the Izu-Bonin Arc, Legs 125 and 126, Proceedings of the Ocean Drilling
Program, Scientific Results, 126, 285–310,
https://doi.org/10.2973/odp.proc.sr.126.137.1992, 1992.
Kaiho, K.: Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen
levels in the modern ocean, Geology, 22, 719-722, 1994.
Kaminski, M. A.: The year 2000 classification of the agglutinated
Foraminifera, edited by: Bubík, M. and Kaminski, M. A., Proceedings of the
Sixth International Workshop on Agglutinated Foraminifera, 237–255, 2004.
Kender, S., Kaminski, M. A., and Jones, R. W.: Early to middle Miocene
foraminifera from the deep-sea Congo Fan, offshore Angola,
Micropaleontology, 54, 477–568, 2008.
Kuppusamy, M., Gupta, A., and Bhaumik, A.: Distribution of deep-sea benthic
foraminifera in the Neogene of Blake Ridge, NW Atlantic Ocean, J.
Micropalaeontol., 30, 33–74, 2011.
Lamarck, J. B.: Suite des mémoires sur les fossiles des environs de
Paris Annales Muséum National d'Histoire Naturelle, 5, 179–188, 1804a.
Lamb, J. L. and Miller, T. H.: Stratigraphic Significance of Uvigerinid
Foraminifers in Western Hemisphere, University of Kansas Paleontological
Institute, Paleontological Contributions, 98 pp., 1984.
Lankester, E. R.: Protozoa, in: Encyclopaedia Britannica, 9th edn., Encyclopaedia Britannica, Inc., London, UK, 19, 830–866, 1885.
Lee, J. J.: Phylum Granuloreticulosa (Foraminifera), in: Handbook of
Protoctista, edited by: Margulis, L., Corliss, J. O., Melkonian, M., and
Chapman, D. J., Jones and Bartlett, Boston, 524–528, 1990.
Lei, Y. and Li, T.: Atlas of Benthic Foraminifera from China Seas: The
Bohai Sea and the Yellow Sea, Springer, Berlin, 399 pp., 2016.
Loeblich, A. and Tappan, H.: Revision of some Recent Foraminiferal genera,
Smithsonian Miscellaneous Collections, 128, 1–37, 1955.
Loeblich, A. R. and Tappan, H.: Suprageneric classification of the
Foraminiferida (Protozoa), Micropaleontology, 30, 1–70, 1984.
Loeblich, A. and Tappan, H.: Foraminiferal genera and their classification
Van Nostrand Reinhold, New York, 970 pp., 1988.
Loeblich, A. R. and Tappan, H.: Present status of Foraminiferal
Classification, in: Studies in Benthic
Foraminifera, edited by: Takayanagi, Y. and Saito, T., Tokai University Press, Tokyo, 93–102, 1992.
Loeblich, A. R. and Tappan, H.: Foraminifera of the Sahul Shelf and Timor
Sea, Special Publications of the Cushman Laboratory for Foraminiferal
Research, 31, 1–661, 1994.
Mackensen, A.: Neogene benthic foraminifers from the southern Indian Ocean
(Kerguelen Plateau): biostratigraphy and paleoecology, edited by: Wise Jr., S. W.,
Schlich, R., et al., College Station, TX (Ocean Drilling Program), 649–673,
1992.
Mackensen, A., Grobe, H., Kuhn, G., and Fütterer, D. K.:
Benthic foraminiferal assemblages from the eastern Weddell Sea between 68
and 73∘ S: Distribution, ecology and fossilization potential,
Mar. Micropaleontol., 16, 241–283,
https://doi.org/10.1016/0377-8398(90)90006-8, 1990.
Mancin, N., Hayward, B. W., Cobianchi, M., and Lupi, C.: Can the
morphology of deep-sea benthic foraminifera reveal what caused their
extinction during the mid-Pleistocene Climate Transition?, Marine Micropaleontology, Elsevier, 53–70 pp., 2013.
Marks, P.: A revision of the smaller foraminifera from the Miocene of the
Vienna Basin, Contributions from the Cushman Foundation for Foraminiferal
Research, 2, 33–73, 1951.
Mazumder, A., Henriques, P., and Nigam, R.: Distribution of benthic
foraminifera within oxygen minima zone, off central west coast, India,
Gondwana Geol. Mag., 6, 5–10, 2003.
Miller, K. G. and Katz, M. E.: Oligocene to Miocene benthic foraminiferal
and abyssal circulation changes in the North Atlantic, Micropaleontology,
33, 97–149, 1987.
Milne-Edwards, A.: Compte rendu sommaire d'une exploration zoologique faite
dans l'Atlantique à bord du navire de l'etat “le Travailleur”, Compte
Rendu Hebdomadaire des Séances de l' Académie des Sciences, 93,
876–882, 1881.
Neugeboren, J. L.: Die foraminiferen aus der Ordnung der Stichostegier von
Ober-Lapugy in Siebenbürgen, Denkschriften der Kaiserlichen Akademie der
Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 12, 65-108,
available at: http://www.biodiversitylibrary.org/item/104339#page/187/ (last access: 5 July 2019), 1856.
Nishimura, A., Konda, I., Matsuoka, K., Nishida, S., and Ohno, T.:
Microfossils of the core sample GDP-11-15 from the Amami Plateau, the
northern margin of the Philippines Sea, Memoirs of the Faculty of Science,
Kyoto University, Series of geology and mineralogy, 43, 111–129, 1977.
Nomura, R.: Cassidulinidae (foraminiferida) from the uppermost Cenozoic of
Japan (part I), The science reports of the Tohoku University, Second series,
Geology, 53, 1–101, 1983a.
Nomura, R.: Cassidulinidae (Foraminiferida) from the uppermost Cenozoic of
Japan (Part 2), Science Reports of the Tohoku University, Sendai, Series 2
(Geology), 54, 1–93, 1983b.
Nomura, R.: Oligocene to Pleistocene benthic foraminifer assemblages at
sites 754 and 756 eastern Indian Ocean, Proceedings Oceanic Drilling Program
(ODP), Scientific Results, 121, 31–75, https://doi.org/10.2973/odp.proc.sr.121.139.1991, 1991.
Nomura, R.: Paleogene to Neogene deep-sea paleoceanography in the eastern
Indian Ocean: benthic foraminifera from ODP Sites 747, 757 and 758,
Micropaleontology, 41, 251–290, 1995.
Nuttall, W. L. F.: Lower Oligocene foraminifera from Mexico, J.
Paleontol., 6, 3–35, 1932.
Ohkushi, K. I., Thomas, E., and Kawahata, H.: Abyssal benthic foraminifera
from the northwestern Pacific (Shatsky Rise) during the last 298 kyr, Mar.
Micropaleontol., 38, 119–147,
https://doi.org/10.1016/S0377-8398(99)00040-7, 1999.
O'Neill, T. A., Hayward, B. W., Kawagata, S., Sabaa, A. T., and Grenfell, H.
R.: Pleistocene extinctions of deep-sea benthic foraminifera: the South
Atlantic record, Palaeontology, 50, 1073–1102, 2007.
Palmer, D. K.: Foraminifera of the Upper Oligocene Cojimar Formation of
Cuba, Sociedad Cubana de Historia Natural, 14, 19–35, 113–132, 277–304,
1940.
Palmer, D. K. and Bermúdez, P. J.: Late Tertiary foraminifera from the
Matanzas Bay region, Cuba, Memorias de la Sociedad Cubana de Historia
Natural Felipe Poey, 9, 237–257, 1936.
Papp, A. and Schmid, M. E.: Die fossilen Foraminiferen des tertiaeren
Beckens von Wien: Revision der Monographie Alcide d' Orbigny (1846),
Abhandlungen der Geologischen Bundesanstalt, 37, 1–311, 1985.
Parker, F. L.: Distribution of the foraminifera in the North- eastern Gulf
of Mexico, Bulletin of the Museum of Comparative Zoology, 111, 453–588, 1954.
Parker, W. K. and Jones, T. R.: On some foraminifera from the North
Atlantic and Arctic Oceans, including Davis Straits and Baffin's Bay,
Philoso. T. R. Soc., 155, 325–441, 1865.
Parr, W. J.: Victorian and South Australian shallow-water foraminifera, Part
II, Proceedings of the Royal Society of Victoria, 44, 1–14, 1932.
Parr, W. J.: Foraminifera, BANZ Antarctic Research Expedition 1929–31,
Report, ser, B, 5, 232–392, 1950.
Patarroyo, G. and Martínez, J.: Foraminíferos bentónicos
recientes en las aguas profundas de la cuenca de Panamá: Ecología y
su posible relación con las corrientes de fondo, Boletín de
Investigaciones Marinas y Costeras, 42, 33–58, 2013.
Patterson, R. T.: Abditodendrix, a new foraminiferal genus in the family
Bolivinitidae, J. Foramin. Res., 15, 138–140, 1985.
Patterson, R. T.: Four new foraminiferal (Protozoa) genera from the Rio
Grande Rise, southwest Atlantic Ocean, Transactions of the American
Microscopical Society, 106, 139–148, 1987.
Persico, D., Wise Jr., S. W., and Jiang, S.: Oligocene–Holocene calcareous
nannofossil biostratigraphy and diagenetic etch patterns on Quaternary
placoliths at ODP Site 1139 on Skiff Bank, Northern Kerguelen Plateau, Proc.
ODP, Sci. Results, 1–19, 2003.
Peryt, D.: Foraminiferal record of the Middle Miocene climate transition
prior to the Badenian salinity crisis in the Polish Carpathian Foredeep
Basin (Central Paratethys), Geol. Q., 57, 141–164, https://doi.org/10.7306/gq.1080, 2013.
Petters, V. and Sarmiento, S. R.: Oligocene and Lower Miocene
Biostratigraphy of the Carmen-Zambraon Area, Colombia, Micropaleontology, 2,
7–35, 1956.
Pflum, C. E. and Frerichs, W. E.: Gulf of Mexico deep-water foraminifers,
Cushman Foundation for Foraminiferal Research, 125 pp., 1976.
Phleger, F. B. and Parker, F. L.: Ecology of foraminifera, northwest Gulf
of Mexico. Pt. II. Foraminifera species, Memoirs of the Geological Society
of America, 46, 1–64, 1951.
Phleger, F. B., Parker, F. L., and Peirson, J. F.: North Atlantic
foraminifera: Swedish Deep-Sea Exped, Repts., Göteborg, 7, 1–122, 1953.
Piveteau, J.: Traité de Paléontologie, Masson et Cie, Paris, 782
pp., 1952.
Poag, C. W.: Benthic Foraminifera of the Gulf of Mexico: Distribution,
ecology, paleoecology, Texas A&M University Press, 244 pp., 2015.
Popescu, G. and Crihan, I.-M.: Middle Miocene foraminifera from Romania:
order Buliminida, part II, Acta Palaeontol. Rom., 5, 397–412, 2005.
Rasmussen, T. L.: Systematic paleontology and ecology of benthic
foraminifera from the Plio-Pleistocene Kallithea Bay section, Rhodes,
Greece, Cushman Foundation Special Publication, 39, 53–157, 2005.
Reiss, Z.: Reclassification of perforate foraminifera, Bulletin of the
Geological Survey of Israel, 35, 1–111, 1963.
Renz, H. H.: Stratigraphy and fauna of the Agua Salada group, State of
Falcon, Venezuela, Geological Society of America, New York, 219 pp., 1948.
Reuss, A. E.: Neue Foraminiferen aus den Schichten des österreichischen
Tertiärbeckens, Denkschriften der Kaiserlichen Akademie der
Wissenschaften, 1, 365–390, 1850.
Reuss, A. E.: Ueber die fossilen Foraminiferen und Entomostraceen der
Septarienthone der Umgegend von Berlin, Zeitschrift der Deutschen
Geologischen Gesellschaft, 3, 49–92, 1851.
Reuss, A. E.: Die Foraminiferen der westphälischen Kreideformation,
Sitzungsberichte der mathematisch-naturwissenschaflichen Classe der
kaiserlichen Akademie der Wissenschaften, 40, 147–238, 1860.
Reuss, A. V.: Entwurf einer systematischen Zusammenstellung der
Foraminiferen, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften
zu Wien, mathematish-naturwissenschaftlichen Classe, 44, 355–396, 1862.
Revets, S. A.: The revision of the genus Buliminellita Cushman and
Stainforth, 1947, and Eubuliminella gen. nov, J. Foramin. Res., 23, 141–151, 1993.
Revets, S. A.: The generic revision of five families of rotaliine
foraminifera. Part I The Bolivinitidae Cushman, 1927, Cushman Foundation for
Foraminiferal Research, Special Publication, 34, 1–55, 1996.
Ridha, D., Boomer, I., and Edgar, K. M.: Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from ODP Sites 752, 1168 and 1139, southern Indian Ocean, University of Birmingham eData repository, https://doi.org/10.25500/edata.bham.00000411, 2019.
Robertson, B. E.: Systematics and paleoecology of the benthic Foraminiferida
from the Buff Bay section, Miocene of Jamaica, Micropaleontology, 44, 1–266, 1998.
Saidova, K. M.: Bentosnye Foraminifery Tikhogo Okeana [Benthonic
foraminifera of the Pacific Ocean], Institut Okeanologii P. P. Shirshova,
Akademiya Nauk SSSR, Moscow, 875 pp., 1975.
Saidova, K. M.: On an up-to-date system of supraspecific taxonomy of
Cenozoic benthonic foraminifera, Akademiya Nauk SSSR, 73 pp.,
1981 (in Russian).
Schroder-Adams, C.: Middle Eocene to Holocene Benthic Foraminifer
Assemblages from the Kerguelen Plateau (Southern Indian Ocean), edited by: Barron,
J., Larsen, B., et al., College Station, Texas, 611–630, 1991.
Schubert, R. J.: Die Miocäne Foraminiferen fauna von Karwin (Oestern
Schlesien), Lotos, 19, 211–247, 1899.
Schultze, M. S.: Über den Organismus der Polythalamien (Foraminiferen),
nebst Bermerkungen über die Rhizopoden im Allgemeinen, Leipzig, 68 pp.,
1854.
Schwager, C.: Fossile Foraminiferen von Kar Nikobar, Reise der
Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858,
1859 unter den Befehlen des Commodore B. von Wüllerstorf-Urbair, 2,
187–268, 1866.
Schwager, C.: Quadro del proposto sistema di classificazione dei
foraminiferi con guscio, Bolletino R. Comitato Geologico d'Italia, 8, 18–27,
1877.
Schweizer, M.: Evolution and molecular phylogeny of Cibicides and Uvigerina
(Rotaliida, Foraminifera), Geologica Ultraiectina, 261, 1–167, 2006.
Schweizer, M., Pawlowski, J., Kouwenhoven, T., and van der Zwaan, B.:
Molecular phylogeny of common Cibicidids and related Rotaliida
(Foraminifera) based on small subunit rDNA sequences, J. Foramin. Res., 39, 300–315, 2009.
Schweizer, M., Fontaine, D., and Pawlowski, J.: Phylogenetic position of two
Patagonian Cibicididae (Rotaliida, foraminifera): Cibicidoides dispars
(d'Orbigny, 1839) and Cibicidoides variabilis (d'Orbigny, 1826), Revue de
Micropaléontologie, 54, 175–182, 2011.
Seguenza, G.: Le formazioni terziarie nella provincia di Reggio (Calabria),
Memorie della Classe di Scienze Fisiche Matematiche e Naturali della Regia
Accademia del Lincei, 3, 1–445, 1880.
Setoyama, E. and Kaminski, M.: Neogene Benthic Foraminifera from the
southern Bering Sea (IODP Expedition 323), Palaeontol. Electron., 18,
1–30, 2015.
Shipboard Scientific Party: Site 752, College Station, TX (Ocean Drilling
Program), 359–453, 1989.
Shipboard Scientific Party: Site 1139, College Station, TX (Ocean Drilling
Program), 1–213, 2000.
Shipboard Scientific Party: Site 1168, College Station, TX (Ocean Drilling
Program), 1–170, 2001.
Silvestri, A.: Revisione di fossili della Venezia e della Venezia Giulia,
Atti dell'Accademia Scientifica Veneto–Trentino–Istriana, Padova (ser.
3), 14, 7–12, 1924.
Silvestri, O.: Saggio di studi sulla fauna microscopia fossile appartenente
al terreno subappenino italiano. Mem. I – monografia delle Nodosarie,
Academia Gioenia Scienze Naturali Catania, 3, 1–108, 1872.
Singh, R. K. and Gupta, A. K.: Late Oligocene–Miocene paleoceanographic
evolution of the southeastern Indian Ocean: evidence from deep-sea benthic
foraminifera (ODP Site 757), Mar. Micropaleontol., 51, 153–170,
https://doi.org/10.1016/j.marmicro.2003.10.003, 2004.
Singh, R. K., Gupta, A. K., and Das, M.: Paleoceanographic significance of
deep-sea benthic foraminiferal species diversity at southeastern Indian
Ocean Hole 752A during the Neogene, Palaeogeogr. Palaeocl., 361, 94–103, 2012.
Smart, C. W., Thomas, E., and Ramsay, A. T.: Middle–late Miocene benthic
foraminifera in a western equatorial Indian Ocean depth transect:
paleoceanographic implications, Palaeogeogr. Palaeocl., 247, 402–420, 2007.
Srinivasan, M. and Sharma, V.: Schwager's Car Nicobar Foraminifera in the
Reports of the Novara Expedition: a revision, Today and Tomorrow Publisher, New Delhi,
83 pp., 1980.
Stainforth, R.: Classification of uniserial calcareous Foraminifera,
Contributions from the Cushman Foundation for Foraminiferal Research, 3,
6–14, 1952.
Stickley, C., Brinkhuis, H., McGonigal, K., Chaproniere, G., Fuller, M.,
Kelly, D., Nürnberg, D., Pfuhl, H., Schellenberg, S., and Schönfeld,
J.: Late Cretaceous–Quaternary biomagnetostratigraphy of ODP Sites 1168,
1170, 1171, and 1172, Tasmanian Gateway, Proceedings of the Ocean Drilling
Program, Scientific Results, 1–57, 2004.
Sztràkos, K.: La stratigraphie, paléoécologie,
paléogéographie et les foraminifères de l'Oligocène du
nord-est de la Hongrie, Éditions du Centre national de la recherche
scientifique, Paris, 95 pp., 1979.
Sztràkos, K. J. R. D. M.: Les foraminifères de l'Eocène du
Bassin de l'Adour (Aquitaine, France): biostratigraphie et taxinomie, Revue
de micropaléontologie, 43, 71–172, 2000.
Thalmann, H. E.: Mitteilungen über Foraminiferen III, Eclogae Geologicae
Helvetiae, 30, 337–356, 1937.
Thomas, E.: Late Cretaceous through Neogene deep-sea benthic foraminifera
(Maud Rise, Weddell Sea, Antarctica), Proceedings Oceanic Drilling Program
(ODP), Scientific Results, 113, 571–594, 1990.
Tjalsma, R.: Eocene to Miocene benthic foraminifera from Deep-Sea Drilling Project Site-516, Rio-Grande Rise, South Atlantic, Initial Reports of the Deep Sea Drilling project, 72, 731–755, 1983.
Tjalsma, R. C. and Lohmann, G. P.: Paleocene-Eocene bathyal and abyssal
benthic foraminifera from the Atlantic Ocean Micropaleontology, Special
Publication 4, 1–90, 1983.
Todd, R.: Smaller Foraminifera, in: Geology of Saipan, Mariana Islands. Part
3. Palaeontology, Professional Papers U.S. Geological Survey, Washington, 265–320, 1957.
Trauth, F.: Das Eozanvorkommen bei Radstadt im Pongau und seine Beziehungen
zu den gleichalterigen Ablagerungen bei Kirchberg am Wechsel und Wimpassing
am Leithagebirge, Kaiserlichen Akademie der Wissenschaften in Wein,
Mathematisch-Naturwissenschaftliche Classe, 95, 171–278, 1918.
Uchio, T.: Foraminiferal assemblages from Hachijo Island, Tokyo Prefecture,
with descriptions of some new genera and species, Japanese Journal of
Geology and Geography, 22, 145–159, 1952.
van Bellen, R. C., Rutgers, J. G., Soest, J. V., Witt Puyt, J. F. C. D., and
Rutgers, A. C.: Smaller Foraminifera from the Lower Oligocene of Cuba,
Koninklijke Nederlandse Akademie van Wetenschappen Proceedings, 9,
1140–1146, 1941.
Van Morkhoven, F. P., Berggren, W. A., Edwards, A. S., and Oertli, H.:
Cenozoic cosmopolitan deep-water benthic foraminifera, Elf Aquitaine, Pau, France, 421
pp., 1986.
Vella, P.: Studies in New Zealand Foraminifera; Part I- Foraminifera from
Cook Strait. Part II – Upper Miocene to Recent Species of the Genus
Notorotalia, New Zealand Geological Survey Paleontological Bulletin, 28,
1–64, 1957.
Voloshinova, N. A.: Pseudoparellinae, p. 80, in: Iskopaemye Foraminifery
SSSR. Nonionidy, Kassidulinidy I Khilostomellidy, edited by: Voloshinova, N.
A., and Dain, L. G., Trudy Vsesoyuznogo Neftyanogo
Nauchnoissledovatel'skogo Geologo-razvedochnogo Instituta (VNIGRI), New
Series, 1–151, 1952 (in Russian).
Voloshinova, N. A.: Uspekhi mikropaleontologii v dele izucheniya vnutrennego
stroeniya foraminifer, Trudy Pervogo Seminara po Mikrofaune, 48–87, 1960.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt,
J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital
bathymetric model of the world's oceans, Earth Space Sci., 2,
331–345, https://doi.org/10.1002/2015ea000107, 2015.
Wedekind, R.: Einführung in die Grundlagen der historischen Geologie:
Mikrobiostratigraphie. Die Korallen-u. Foraminiferenzeit, Enke, Stuttgart, 136 pp.,
1937.
Whittaker, J. E.: Benthic Cenozoic Foraminifera from Ecuador: Taxonomy and
Distribution of Smaller Benthic Foraminifera from Coastal Ecuador (Late
Oligocene-Late Pliocene), British Museum of Natural, 194 pp., 1988.
Williamson, W. C.: On the recent foraminifera of Great Britain, Ray Society,
107 pp., 1858.
Woodruff, F.: Changes in Miocene deep-sea benthic foraminiferal distribution
in the Pacific Ocean: relationship to paleoceanography, Geological Society
of America Memoir, 163, 131–175, 1985.
Wright, R.: Neogene benthic foraminifera from DSDP leg 42A, Mediterranean
Sea. Init. Rept, DSDP, 42, 709–726, 1978.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, 2001.
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
This paper records the spatial and temporal distribution of deep-sea benthic microfossils...