Articles | Volume 39, issue 2
https://doi.org/10.5194/jm-39-233-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-39-233-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Matías Reolid
CORRESPONDING AUTHOR
Departamento de Geología, Universidad de Jaén, 23071 Jaén, Spain
Related authors
Fernando Nieto, Isabel Abad, Blanca Bauluz, and Matías Reolid
Eur. J. Mineral., 33, 503–517, https://doi.org/10.5194/ejm-33-503-2021, https://doi.org/10.5194/ejm-33-503-2021, 2021
Short summary
Short summary
Glauconite and celadonite are green micas which are significant as indicators of palaeoenvironments. They share similar chemical compositions, characterized by their Fe2+, Fe3+ and Mg content despite their white-mica structure; however, the chemical and structural relations were unknown. Their rare coexistence in volcanic rocks due to bacterial activity has allowed us, after an electron microscopy study, to identify a compositional gap between them justified by structural differences.
Fernando Nieto, Isabel Abad, Blanca Bauluz, and Matías Reolid
Eur. J. Mineral., 33, 503–517, https://doi.org/10.5194/ejm-33-503-2021, https://doi.org/10.5194/ejm-33-503-2021, 2021
Short summary
Short summary
Glauconite and celadonite are green micas which are significant as indicators of palaeoenvironments. They share similar chemical compositions, characterized by their Fe2+, Fe3+ and Mg content despite their white-mica structure; however, the chemical and structural relations were unknown. Their rare coexistence in volcanic rocks due to bacterial activity has allowed us, after an electron microscopy study, to identify a compositional gap between them justified by structural differences.
Related subject area
Benthic foraminifera
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Aberhan, M. and Fursich, F. T.: Mass origination versus mass extinction: The
biological contribution to the Pliensbachian – Toarcian extinction event,
J. Geol. Soc. Lond., 157, 55–60, 2000.
Aguado, R., Reolid, M., and Molina, E.: Response of calcareous nannoplankton
to the Late Cretaceous Oceanic Anoxic Event 2 at Oued Bahloul (central
Tunisia), Palaeogeogr., Palaeocl., 459, 289–305, 2016.
Alegret, L., Reolid, M., and Vega Pérez, M.: Environmental instability
during the latest Paleocene at Zumaia (Basque-Cantabric Basin): the
bellwether of the Paleocene-Eocene Thermal Maximum, Palaeogeogr.
Palaeocl., 497, 186–200, 2018.
Algeo, T. J., Morford, J., and Cruse, A.: New applications of trace metals as
proxies in marine paleoenvironments, Chem. Geol., 306–307, 160–164, 2012.
Anderson, T. F. and Arthur, M. A.: Stable isotopes of oxygen and carbon and
their application to sedimentologic and paleoenvironmental problems, in:
Stable Isotopes in Sedimentary Geology, edited by: Arthur, M. A., Anderson, T. F., Kaplan, L. R., Veizer, J., and Land, L., SEPM, Georgia 1–151, 1983.
Arias, C.: The early Toarcian (early Jurassic) ostracod extinction events in
the Iberian Range: The effect of temperature changes and prolonged exposure
to low dissolved oxygen concentrations, Palaeogeogr. Palaeocl., 387, 40–55, 2013.
Arias, C. and Whatley, R.: Distribution patterns of Early Jurassic Ostracoda
and possible communication routes across the European Epicontinental Sea:
evidence changes in ocean circulation patterns and its consequence to
climate change, N. Jb. Geol. Palaont. Abh., 232, 1–55, 2004.
Arias, C. and Whatley, R.: Multivariate hierarchical analyses of Early
Jurassic Ostracoda assemblages, Lethaia, 42, 495–510, 2009.
Ayress, M. A., De Deckker, P., and Coles, G. P.: A taxonomic and
distributional survey of marine benthonic Ostracoda of Kerguelen and Heard
Islands, South Indian Ocean, J. Micropal., 23, 15–38, 2004.
Baghli, H., Mattioli, E., Spangenberg, J. E., Bensalah, M., Arnaud-Godet, F.,
Pittet, B., and Suan, G.: Early Jurassic climatic trends in the
south-Tethyan margin, Gond. Res., 77, 67–81, 2020.
Baroni, I. R., Pohl, A., van Helmond, N. A. G., Papadomanolaki, N. M., Coe,
A. L., Cohen, A. S., van de Schootbrugge, B., Donnadieu, Y., and Slomp, C. P.:
Ocean circulation in the Toarcian (Early Jurassic): A key control on
deoxygenation and carbon burial on the European Shelf, Paleoceanogr.
Paleocl., 33, 994–1012, 2018.
Bartolini, A., Nocchi, M., Baldanza, A., and Parisi, G.: Benthic life during
the Early Toarcian Anoxic Event in the South western Tethyan Umbria-Marche
Basin, Central Italy, Studies in Benthic Foraminifera Benthos'90, Tokai
University Press, 323–338, 1992.
Bejjaji, Z., Chakiri, S., Reolid, M., and Boutakiout, M.: Foraminiferal
biostratigraphy of the Toarcian deposits (Lower Jurassic) from the Middle
Atlas (Morocco). Comparison with western Tethyan areas, J. Afr. Earth Sci.,
57, 154–162, 2010.
Bellanca, A., Masetti, D., Neri, R., and Venezia, F.: Geochemical and
sedimentological evidence of productivity cycles recorded in Toarcian black
shales from the Belluno basin, southern Alps, northern Italy, J. Sediment Res.,
69, 466–476, 1999.
Benson, R., Del Grosso, R., and Steineck, P.: Ostracode distribution and
biofacies, Newfoundland continental slope and rise, Micropaleontology, 29, 430–453,
1983.
Berner, R. A. and Raiswell, R.: Burial of organic carbon and pyrite sulfur in
sediments over Phanerozoic time: a new theory, Geochim. Cosmochim. Ac., 47,
855–862, 1983.
Bodin, S., Mattioli, E., Frölich, S., Marshall, J. D., Boutib, L.,
Lahsini, S., and Redfern, J.: Toarcian carbon isotope shifts and nutrient
changes from the Northern margin of Gondwana (High Atlas, Morocco,
Jurassic): palaeoenvironmental implications, Palaeogeogr. Palaeocl., 297, 377–390, 2010.
Bonnet, L., Andreu, B., Rey, J., Cubaynes, R., Ruget, C., N'Zaba-Makaya, O.,
and Brunel, F.: Fluctuations of environmental factors as seen by means of
statistical analyses in micropaleontological assemblages from a Liassic
Series, Micropaleontology, 45, 399–417, 1999.
Boomer, I. and Whatley, R.: Ostracoda and dysaerobia in the Lower Jurassic
of Wales: the reconstruction of past oxygen levels, Palaeogeogr.
Palaeocl., 99, 373–379, 1992.
Boomer, I., Lord, A. R., Page, K. N., Bown, P. R., Lowry, F. M. D., and Riding,
J. B.: The biostraigraphy of the Upper Pliensbachian-Toarcian (Lower
Jurassic) sequence at Ilminster, Somerset, J. Micropalaeontol., 28, 67–85, 2009.
Boomer, L., Lord, A., and Crasquin, S.: The extinction of the Metacopina
(Ostracoda). Senckenberg, Lethaea, 88, 47–53, 2008.
Boudchiche, L., Nicollin, J. P., and Ruget, C.: Evolution des assemblages de
foraminifères pendant le Toarcien dans le massif des Beni Snassen (Maroc
nord-oriental), Géol. Méditerranéenne, 14, 161–166, 1987.
Bucefalo-Palliani, R., Mattioli, E., and Riding, J. B.: The response of
marine phytoplankton and sedimentary organic matter to the Early Toarcian
(Lower Jurassic) oceanic anoxic event in northern England, Mar. Micropaleontol., 46, 223–245, 2002.
Cabral, M. C., Loureiro, I. M., Duarte, L. V., and Azêredo, A. C.: Registo
da extinção dos Metacopina (Ostracoda, Crustacea) no Toarciano de
Rabaçal, região de Coimbra, Comun. Geol., 100, 63–68, 2013.
Calvert, S. E.: Geochemistry and origin of the Holocene sapropel in the Black
Sea, in: Facets of
Modern Biogeochemistry, edited by: Ittekkot, V., Kemp, S., Michaelis, W., and Spitzy, A., Springer, Berlin, 326–352, 1990.
Calvert, S. E. and Pedersen, T. F.: Geochemistry of recent oxic and anoxic
marine sediments: Implications for the geological record, Mar. Geol., 113,
67–88, 1993.
Caruthers, A. H., Smith, P. L., and Grocke, D. R.: The Pliensbachian-Toarcian
(Early Jurassic) extinction: A North American perspective, GSA Spec. Paper,
505, 20 pp., https://doi.org/10.1130/2014.2505(11), 2014.
Casellato, C. E. and Erba, E.: Calcareous nannofossil biostratigraphy and
paleoceanography of the Toarcian Oceanic Anoxic Event at Colle di Sogno
(Southern Alps, Northern Italy), Riv. Ital. Paleontol. S., 121, 297–327,
2015.
Caswell, B. A. and Coe, A. L.: A high-resolution shallow marine record of the
Toarcian (Early Jurassic) Oceanic Anoxic Event from the East Midlands Shelf,
UK, Palaeogeogr. Palaeocl., 365–366, 124–135, 2012.
Cecca, F. and Macchioni, F.: The two Early Toarcian (Early Jurassic)
extinction events in ammonoids, Lethaia, 37, 35–56, 2004.
Cheel, R. J. and Leckie, D. A.: Hummocky cross-stratification, in:
Sedimentology Review/1, edited by: Wright, P., Blackwell Scientific Publication, London,
103–122, 1993.
Clémence, M. E., Gardin, S., Bartolini, A., Paris, G., Beaumont, V., and
Guex, J.: Benthoplanktonic evidence from the Austrian Alps for a decline in
sea-surface carbonate production at the end of the Triassic, Swiss J.
Geosci., 103, 293–315, 2010.
Copestake, P. and Johnson, B.: Lower Jurassic foraminifera from the Llanbedr
(Mochras Farm) Borehole, North Wales, UK, in: Monograph of the
Palaeontographical Society, 167 pp., Palaeontographical Society, London, 2014.
Corbari, L.: Physiologie respiratoire, comportementale et
morphofonctionnelle des ostracodes Podocopes et Myodocopes et d'un amphipode
caprellidé profond. Stratégies adaptatives et implications
évolutives, PhD Thesis, University Bordeaux, 300 pp., 2004.
Corbari, L., Carbonel, P., and Massabuau, J.-C.: How a low tissue O2
strategy could be conserved in early crustaceans: the example of the
podocopid ostracods, J. Exp. Biol., 207, 4415–4425, 2004.
Corliss, B. H.: Microhabitat of benthic foraminifera with deep sea sediments,
Nature, 314, 435–624, 1985.
Corliss, B. H.: Morphology and microhabitat preferences of benthic
foraminifera from the northwest Atlantic Ocean, Mar. Micropaleontol., 17, 195–236,
1991.
Cronin, T. M., Holtz Jr., T. R., and Whatley, R. C.: Quaternary
paleoceanography of the deep Arctic Ocean based on quantitative analysis of
Ostracoda, Mar. Geol., 119, 305–332, 1994.
Cronin, T., Holtz Jr., T. R., Stein, M., Spielhagen, R., Futterer, D., and
Wollenburg, J.: Late Quaternary paleoceanography of the Eurasian Basin,
Arctic Ocean, Paleoceanography, 10, 259–281, 1995.
Cronin, T., Boomer, I., Dwyer, G. S., and Rodríguez-Lázaro, J.:
Ostracoda and paleoceanography, in: The
Ostracoda: Applications in Quaternary Research, edited by: Holmes, J. A. and Chivas, A. R., American Geophysical Union,
Washington, DC, 99–119, 2002.
Danise, S., Twichett, R. J., Little, C. T. S., and Clemence, M. E.: The impact
of global warming and anoxia on marine benthic community dynamics: an
example from the Toarcian (Early Jurassic), PLoS ONE, 8, e56255, https://doi.org/10.1371/journal.pone.0056255, 2013.
Danise, S., Clemence, M. E., Price, G. D., Murphy, D. P., Gomez, J. J., and
Twitchett, R. J.: Stratigraphic and environmental control on marine benthic
community change through the early Toarcian extinction event (Iberian Range,
Spain), Palaeogeogr. Palaeocl., 524, 183–200, 2019.
Depêche, F.: Les ostracodes d'une plate-forme continentale au
Jurassique. Recherches sur le Bathonien du Bassin parisien, PhD Thesis,
Univ. Pierre Marie Curie, Paris, 325 pp., 1984.
Dera, G. and Donnadieu, Y.: Modeling evidences for global warming, Arctic
seawater freshening, and sluggish oceanic circulation during the Early
Toarcian anoxic event, Paleoceanography, 27, PA2211, https://doi.org/10.1029/2012PA002283, 2012.
Dera, G., Puceat, E., Pellenard, P., Neige, P., Delsate, D., Joachimski,
M. M., Reisberg, L., and Martínez, M.: Water mass exchange and
variations in seawater temperature in the NW Tethys during the Early
Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and
belemnites, Earth Planet. Sc. Lett., 286, 198–207, 2009.
Dingle, R. V. and Lord, A.: Benthic ostracods and deep water-masses in the
Atlantic Ocean, Palaeogeogr. Palaeocl., 80, 213–235,
1990.
Duarte, L. V.: Facies analysis and sequential evolution of the Toarcian-Lower
Aalenian series in the Lusitanian Basin (Portugal), Com. Inst. Geol. Min.,
83, 65–94, 1997.
Duarte, L. V.: Clay minerals and geochemical evolution in the Toarcian-Lower
Aalenian of the Lusitanian Basin, Cuad. Geol. Ibérica, 24, 69–98, 1998.
Duarte, L. V. and Soares, A. F.: Eventos de natureza tempestítica e
turbiditíca no Toarciano inferior da Bacia Lusitaniana (Sector Norte),
Cad. Geogr. Univ. Coimbra, 12, 89–95, 1993.
Erba, E.: Calcareous nannofossils and Mesozoic oceanic anoxic events, Mar.
Micropaleontol., 52, 85–106, 2004.
Ernst, S. and Van der Zwaan, G. B.: Effects of experimentally induced raised
levels of organic flux and oxygen depletion on a continental slope benthic
foraminiferal community, Deep-Sea Res. Pt. I, 51, 1709–1739, 2004.
Fantasia, A., Follmi, K. B., Adatte, T., Spangenberg, J. E., and Mattioli, E.:
Expression of the Toarcian Oceanic Anoxic Event: New insights from a Swiss
transect, Sediment, 66, 262–284, 2019.
Fisher, R. A., Corbet, A. S., and Williams, C. B.: The relations between the
number of species and the number of individuals in a random sample of an
animal population, J. Anim. Ecol., 12, 42–58, 1943.
Fohrer, B. and Samankassou, E.: Paleoecological control of ostracod
distribution in a Pennsylvanian Auernig cyclothem of the Carnic Alps,
Austria, Palaeogeogr. Palaeocl., 225, 317–330, 2005.
Fontanier, C., Jorissen, F. J., Licari, L., Alexandre, A., Anschutz, P., and
Carbonel, P.: Live benthic foraminiferal faunas from the Bay of Biscay:
faunal density, composition, and microhabitats, Deep-Sea Res. Pt. I, 49,
751–785, 2002.
Friedrich, O., Erbacher, J., Wilson, P. A., Moriya, K., and Mutterlose, J.:
Paleoenvironmental changes across the Mid Cenomanian Event in the tropical
Atlantic Ocean (Demerara Rise ODP Leg 207) inferred from benthic
foraminiferal assemblages, Mar. Micropaleontol., 71, 28–40, 2009.
Fu, X. G., Wang, M., Zeng, S. Q., Feng, X. L., Wang, D., and Song, C. Y.:
Continental weathering and palaeoclimatic changes through the onset of the
Early Toarcian oceanic anoxic event in the Qiangtang Basin, Eastern Tethys,
Palaeogeogr. Palaeocl., 487, 241–250, 2017.
Gallego-Torres, D., Martínez-Ruiz, F., Paytan, A., Jiménez-Espejo,
F. J., and Ortega-Huertas, M.: Pliocene-Holocene evolution of depositional
conditions in the Eastern Mediterranean: Role of anoxia vs. productivity at
time of sapropel deposition, Palaeogeogr. Palaeocl., 246,
424–439, 2007.
García-Hernández, M., López-Garrido, A. C., Martín-Algarra,
A., Molina, J. M., Ruiz-Ortiz, P. A., and Vera, J. A.: Las discontinuidades
mayores del Jurásico de las Zonas Externas de las Cordilleras
Béticas: Análisis e interpretación de los ciclos sedimentarios,
Cuad. Geol. Ibérica, 13, 35–52, 1989.
García Joral, F., Gómez, J. J., and Goy, A.: Mass extinction and
recovery of the Early Toarcian (Early Jurassic) brachiopods linked to
climate change in northern and central Spain, Palaeogeogr. Palaeocl., 302, 367–380, 2011.
Gatto, R., Monari, S., Neige, P., Pinard, J. D., and Weis, R.: Gastropods
from upper Pliensbachian-Toarcian (Lower Jurassic) sediments of Causses
basin, southern France and their recovery after the early Toarcian anoxic
event, Geol. Mag., 152, 871–901, 2015.
Gebhardt, H., Kuhnt, W., and Holbourn, A.: Foraminiferal response to sea
level change, organic flux and oxygen deficiency in the Cenomanian of the
Tarfaya Basin, southern Morocco, Mar. Micropaleontol., 53, 133–157, 2004.
Gill, B. C., Lyons, T. W., and Jenkyns, H. C.: A global perturbation to the
sulfur cycle during the Toarcian Oceanic Anoxic Event, Earth Planet. Sc.
Lett., 312, 484–496, 2011.
Gómez, J. J. and Arias, C.: Rapid warming and ostracods mass extinction
at the Lower Toarcian (Jurassic) of central Spain, Mar. Micropaleontol., 74,
119–135, 2010.
Gómez, J. J. and Goy, A.: Warming-driven mass extinction in the Early
Toarcian (Early Jurassic) of northern and central Spain. Correlation with
other time-equivalent European sections, Palaeogeogr. Palaeocl., 306, 176–195, 2011.
Graciansky, P. C., Jacquin, T., and Hesselbo, S. P.: The Ligurian cycle: an
overview of Lower Jurassic 2nd-order transgressive/regressive facies cycles
in western Europe, SEPM Spec. Pub., 60, 467–479, 1998.
Hallam, A.: Radiations and extinctions in relation to environmental change
in the marine Lower Jurassic of northwest Europe, Paleobiology, 13, 152–168,
1987.
Haq, B. U.: Jurassic sea-level variations: a reappraisal, GSA Today, 28,
4–10, 2018.
Harazim, D., van de Schootbrugge, B., Sorichter, K., Fiebig, J., Weug, A.,
Suan, G., and Oschmann, W.: Spatial variability of watermass conditions
within the European Epicontinental Seaway during the Early Jurassic
(Pliensbachian–Toarcian), Sediment, 60, 359–390, 2013.
Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. L. W., Pattrick,
R. A. D., Garner, C. D., and Vaughan, D. J.: Mechanisms of molybdenum removal
from the sea and its concentration in black shales: EXAFS evidences,
Geochim. Cosmochim. Ac., 60, 3631–3642, 1996.
Hermoso, M., Le Callonnec, L., Minoletti, F., Renard, M., and Hesselbo,
S. P.: Expression of the Early Toarcian negative carbon-isotope excursion in
separated carbonate microfractions (Jurassic, Paris Basin), Earth Planet.
Sc. Lett., 277, 194–203, 2009.
Herrero, C.: Lower Toarcian foraminifera from the Northern sector of the
Iberian Range (Spain), Geobios, 27, 287–295, 1994.
Herrero, C.: Pliensbachian Foraminifera at Camino section (Basque-Cantabrian
Basin, Spain), Cuad. Geol. Ibérica, 24, 121–139, 1998.
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V., and Oliveira, L. C. V.:
Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event
from fossil wood and marine carbonate (Lusitanian Basin, Portugal), Earth
Planet. Sc. Lett., 253, 455–470, 2007.
Hylton, M. D.: Microfaunal Investigation of the Early Toarcian (Lower
Jurassic) Extinction Event in NW Europe, PhD Thesis, University of Plymouth,
287 pp., 2000.
Hylton, M. D. and Hart, M. B.: Benthic foraminiferal response to
Pliensbachian-Toarcian (Lower Jurassic) sea-level change and oceanic anoxia
in NW Europe, Geores. Forum, 6, 455–462, 2000.
Izumi, K., Miyaji, T., and Tanabe, K.: Early Toarcian (Early Jurassic)
oceanic anoxic event recorded in the shelf deposits in the northwestern
Panthalassa: evidence from the Nishinakayama formation in the Toyora area,
west Japan, Palaeogeogr. Palaeocl., 315–316, 100–108,
2012.
Izumi, K., Endo, K., Kemp, D. B., and Inui, M.: Oceanic redox conditions
through the late Pliensbachian to early Toarcian on the northwestern
Panthalassa margin: Insights from pyrite and geochemical data, Palaeogeogr. Palaeocl., 493, 1–10, 2018.
Jenkyns, H. C.: The Early Toarcian and Cenomanian-Turonian anoxic events in
Europe: comparisons and contrasts, Geol. Runds., 74, 505–518, 1985.
Jenkyns, H. C.: The early Toarcian (Jurassic) anoxic event – stratigraphic,
sedimentary, and geochemical evidence, Am. J. Geosci., 288, 101–151, 1988.
Jenkyns, H. C.: Evidence for a rapid climate change in the Mesozoic-Paleogene
greenhouse world, Philos. T. R. Soc., 361, 1885–1916, 2003.
Jenkyns, H. C. and Clayton, C. J.: Black shales and carbon isotopes in pelagic
sediments from the Tethyan Lower Jurassic, Sediment, 33, 87–106, 1986.
Jenkyns, H. C., Jones, C. E., Grocke, D. R., Hesselbo, S. P., and Parkinson,
D. N.: Chemostratigraphy of the Jurassic System: applications, limitations
and implications for palaeoceanography, J. Geol. Soc. Lond., 159, 351–378,
2002.
Jiménez, A. P.: Estudio paleontológico de los ammonites del
Toarciense inferior y medio de las Cordilleras Béticas
(Dactylioceratidae e Hildoceratidae), PhD Thesis, Univ. Granada, 252 pp.,
1986.
Jones, R. W. and Charnock, M. A.: “Morphogroups” of agglutinating
foraminifera. Their life position and feeding habits and potential
applicability in (paleo)ecological studies, Rev. Paléobiol., 4, 311–320,
1985.
Jorissen, F. J., De Stigter, H. C., and Widmark, J. G. V.: A conceptual model
explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15,
1995.
Józsa, S., Suan, G., and Schlogl, J.: Benthic foraminiferal bioevents in
lower to upper Toarcian strata of Southern Beaujolais (SE France), Geobios,
51, 137–150, 2018.
Korte, C. and Hesselbo, S. P.: Shallow marine carbon and oxygen isotope and
elemental records indicate icehouse-greenhouse cycles during the early
Jurassic, Paleoceanography, 26, PA4219, https://doi.org/10.1029/2011PA002160, 2011.
Krencker, F. N., Bodin, S., Suan, G., Heimhofer, U., Kabiri, L., and
Immenhauser, A.: Toarcian extreme warmth led to tropical cyclone
intensification, Earth Planet. Sc. Lett., 425, 120–130, 2015.
Kuhnt, W., Moullade, M., and Kaminski, M. A.: Ecological structuring and
evolution of deep sea agglutinated foraminifera – a review, Rev. Micropal.,
39, 271–281, 1996.
Lethiers, F. and Whatley, R.: The use of ostracoda to reconstruct the oxygen
levels of Late Palaeozoic oceans, Mar. Micropaleontol., 24, 57–69, 1994.
Lethiers, F. and Whatley, R.: Oxygenation des eaux et ostracodes filtreurs:
Application au Devonien-Dinantien, Geobios, 28, 199–207, 1995.
Lezin, C., Andreu, B., Pellenard, P., Bouchez, J. L., Emmanuel, L.,
Fauré, P., and Lanchem, P.: Geochemical disturbance and
paleoenvironmental changes during the Early Toarcian in NW Europe, Chem.
Geol., 341, 1–15, 2013.
Little, C. T. S. and Benton, M. J.: Early Jurassic mass extinction: a global
long-term event, Geology, 23, 495–498, 1995.
Loeblich, A. R. and Tappan, H.: Foraminiferal genera and their
classifications, Van Noslrand Reinhold (Ed.), New York, 970 pp., 1988.
Mailliot, S., Mattioli, E., Guex, J., and Pittet, B.: The Early Toarcian
anoxia, a synchronous event in the Western Tethys? An approach by
quantitative biochronology (Unitary Associations), applied on calcareous
nannofossils, Palaeogeogr. Palaeocl., 240, 562–586,
2006.
Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B., and Guex,
J.: Late Pliensbachian – Early Toarcian (Early Jurassic) environmental
changes in an epicontinental basin of NW Europe (Causses area, central
France): a micropaleontological and geochemical approach, Palaeogeogr. Palaeocl., 273, 346–364, 2009.
Marok, A. and Reolid, M.: Lower Jurassic sediments from the Rhar Roubane
Mountains (Western Algeria): Stratigraphic precisions and synsedimentary
block-faulting, J. Afr. Earth Sci., 76, 50–65, 2012.
Mattioli, E., Pittet, B., Bucefalo-Palliani, R., Röhl, H. J.,
Schmid-Röhl, A., and Morettini, E.: Phytoplankton evidence for the
timing and correlation of palaeoceanographical changes during the early
Toarcian oceanic anoxic event (Early Jurassic), J. Geol. Soc. Lond., 161,
685–693, 2004.
Mattioli, E., Pittet, B., Suan, G., and Mailliot, S.: Calcareous nannoplankton
across the Early Toarcian Anoxic Event: implications for paleoceanography
within the western Tethys, Paleoceanography, 23, PA3208, https://doi.org/10.1029/2007PA001435, 2008.
McArthur, J. M.: Early Toarcian black shales: A response to an oceanic anoxic
event or anoxia in marginal basins?, Chem. Geol., 522, 71–83, 2019.
McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q., and Howarth,
R. J.: Basinal restriction, black shales, Re-Os dating, and the Early
Toarcian (Jurassic) oceanic anoxic event, Paleoceanography, 23, PA4217,
https://doi.org/10.1029/2008PA001607, 2008.
Meyers, S. R., Sageman, B. B., and Lyons, T. W.: Organic carbon burial rate and
the molybdenum proxy: theoretical framework and application to
Cenomanian–Turonian oceanic event 2, Paleoceanography, 20, PA2002, https://doi.org/10.1029/2004PA001068, 2005.
Morten, S. D. and Twitchett, R. J.: Fluctuations in the body size of marine
invertebrates through the Pliensbachian-Toarcian extinction event,
Palaeogeogr. Palaeocl., 284, 29–38, 2009.
Montero-Serrano, J. C., Follmi, K. B., Adatte, T., Spangenberg, J. E.,
Tribovillard, N., Fantasia, A., and Suan, G.: Continental weathering and
redox conditions during the early Toarcian Oceanic Anoxic Event in the
northwestern Tethys: Insight from the Posidonia Shale section in the Swiss
Jura Mountains, Palaeogeogr. Palaeocl., 429, 83–99,
2015.
Müller, T., Price, G. D., Bajnai, D., Nyerges, A., Kesjar, D., Raucsik,
B., Varga, A., Judik, K., Fekete, J., May, Z., and Palfy, J.: New multiproxy
record of the Jenkyns Event (also known as the Toarcian Oceanic Anoxic
Event) from the Mecsek Mountains (Hungary): Differences, duration and
drivers, Sediment, 64, 66–86, 2017.
Müller, T., Jurikova, H., Gutjahr, M., Tomašovych, A., Schlögl,
J., Liebetrau, V., Duarte, L.V., Milovsky, R., Suan, G., Mattioli, E.,
Pittet, B., and Eisenhauer, A.: Ocean acidification during the early
Toarcian extinction event: evidence from boron isotopes in brachiopods,
Geology, 48, 1184–1188, https://doi.org/10.1130/G47781.1, 2020.
Nagy, J.: Environmental significance of foraminiferal morphogroups in
Jurassic North Sea deltas, Palaeogeogr. Palaeocl., 95,
111–134, 1992.
Nicollin, J. P., Faure, P., and Ruget, C.: Le Toarcien inférieur,
période charnière dans lévolution des nodosariides
(foraminifères): lexemple des Pyrénées Méridionales du
Haut-Aragon, Geobios MS, 18, 347–356, 1995.
Nieto, L. M., Molina, J. M., and Ruiz-Ortiz, P. A.: La Formación
Zegrí: registro de los primeros estadios de una etapa sin-rift en el
Jurásico de las Zonas Externas Béticas, Geotemas, 6, 157–160, 2004.
Nikitenko, B. L., Reolid, M., and Glinskikh, L.: Ecostratigraphy of benthic
foraminifera for interpreting Arctic record of Early Toarcian biotic crisis
(Northern Siberia, Russia), Palaeogeogr. Palaeocl., 376,
200–212, 2013.
Nocchi, M. and Bartolini A.: Investigation on Late Domerian-Early Toarcian
Lagenina and Glomospirella assemblages in the Umbria-Marche Basin (Central Italy),
Geobios MS, 17, 689–699, 1994.
N'Zaba-Makaya, O., Andreu, B., Brunel, F., Mouterde, R., Rey, J., and Rocha,
R. B.: Biostratigraphie et paléoécologie des peuplements d'ostracodes
dans le Domérien du Bassin Lusitanien, Portugal, Ciências da Terra,
15, 21–44, 2003.
Olóriz, F., Reolid, M., and Rodríguez-Tovar, F. J.: Palaeogeographic
and stratigraphic distribution of mid-late Oxfordian foraminiferal
assemblages in the Prebetic Zone (Betic Cordilllera, Southern Spain),
Geobios, 36, 733–747, 2003.
Olóriz, F., Reolid, M., and Rodríguez-Tovar, F. J.: Palaeogeography
and relative sealevel history forcing eco-sedimentary contexts in Late
Jurassic epicontinental shelves (Prebetic Zone, Betic Cordillera): an
ecostratigraphic approach, Earth-Sci. Rev., 111, 154–178, 2012.
Palomo, I.: Mineralogía y geoquímica de sedimentos pelágicos
del Jurásico Inferior de las Cordilleras Béticas (SE de España),
PhD Thesis, Univ. Granada, 345 pp., 1987.
Parisi, G., Ortega-Huertas, M., Nocchi, M., Palomo, I., Monaco, P., and
Ruiz, F.: Stratigraphy and geochemical anomalies of the Early Toarcian
oxygen-poor interval in the Umbria-Marche Apennines (Italy), Geobios, 29,
469–484, 1996.
Pawloski, J., Holzmann, M., and Tyszka, J.: New supraordinal classification
of Foraminifera: Molecules meet morphology, Mar. Micropaleontol., 100, 1–10, 2013.
Peypouquet, J.-P., Ducasse, O., and Rousselle, L.: Morphogenesis and
environment. Theoretical and practical aspect from Hammatocythere: Paleogene Ostracods of
the Aquitaine Basin, in: Concepts and Methods in
Paleontology, edited by: Martinell, J., University of Barcelona, Barcelona, 173–187, 1981.
Piazza, V., Ullman, C. V., and Aberhan, M.: Temperature-related body size
change of marine benthic macroinvertebrates across the Early Toarcian Anoxic
Event, Sci. Rep.-UK, 10, 4675, https://doi.org/10.1038/s41598-020-61393-5, 2020.
Pittet, B., Suan, G., Lenoir, F., Duarte, L. V., and Mattioli, E.: Carbon
isotope evidence for sedimentary discontinuities in the lower Toarcian of
the Lusitanian Basin (Portugal): sea-level change at the onset of the
Oceanic Anoxic Event, Sediment. Geol., 303, 1–14, 2014.
Pörtner, R. O.: Oxygen- and capacity-limitation of thermal tolerance: a
matrix for integrating climate-related stressor effects in marine
ecosystems, J. Exp. Biol., 213, 881–893, 2010.
Powell, W. G., Johnston, P. A., and Collom, C. J.: Geochemical evidence for
oxygenated bottom waters during deposition of fossiliferous strata of the
Burgess Shale Formation, Palaeogeogr. Palaeocl., 201,
249–268, 2003.
Reolid, M.: Taphonomic features of Lenticulina as a tool for palaeoenvironmental
interpretation of mid-shelf deposits of Upper Jurassic (Prebetic Zone,
Southern Spain), Palaios, 23, 482–494, 2008.
Reolid, M.: Stable isotopes on foraminifera and ostracods for interpreting
incidence of the Toarcian Oceanic Anoxic Event in Westernmost Tethys: role
of water stagnation and productivity, Palaeogeogr. Palaeocl., 395, 77–91, 2014a.
Reolid, M.: Pyritized radiolarians and siliceous sponges from oxygen
restricted deposits (Lower Toarcian, Jurassic), Facies, 60, 789–799, 2014b.
Reolid, M., Nagy, J., Rodríguez-Tovar, F. J., and Olóriz, F.:
Foraminiferal assemblages as palaeoenvironmental bioindicators in Late
Jurassic epicontinental platforms: Relation with trophic conditions, Acta
Palaeontol. Pol., 53, 706–722, 2008a.
Reolid, M., Rodríguez-Tovar, F. J., Nagy, J., and Olóriz, F.:
Benthic foraminiferal morphogroups of mid to outer shelf environments of the
Late Jurassic (Prebetic Zone, Southern Spain): characterization of biofacies
and environmental significance, Palaeogeogr. Palaeocl.,
261, 280–299, 2008b.
Reolid, M., Rodríguez-Tovar, F. J., Marok, A., and Sebane, A.: The
Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North
African Paleomargin): role of anoxia and productivity, GSA Bull., 124,
1646–1664, 2012a.
Reolid, M., Sebane, A., Rodríguez-Tovar, F. J., and Marok, A.:
Foraminiferal morphogroups as a tool to approach Toarcian Anoxic Event in
the Western Saharan Atlas (Algeria), Palaeogeogr. Palaeocl., 323, 87–99, 2012b.
Reolid, M., Chakiri, S., and Bejjaji, Z.: Adaptative strategies of the
Toarcian benthic foraminiferal assemblages from the Middle Atlas (Morocco):
palaeoecological implications, J. Afr. Earth Sci., 84, 1–12, 2013.
Reolid, M., Mattioli, E., Nieto, L. M., and Rodríguez-Tovar, F. J.: The
Early Toarcian Ocanic Anoxic Event in the External Subbetic (Southiberian
Palaeomargin, Westernmost Tethys): geochemistry, nannofossils and ichnology,
Palaeogeogr. Palaeocl., 411, 79–94, 2014a.
Reolid, M., Marok, A., and Sebane, A.: Foraminiferal assemblages and
geochemistry for interpreting the incidence of Early Toarcian environmental
changes in North Gondwana palaeomargin (Traras Mountains, Algeria), J. Afr.
Earth Sci., 95, 105–122, 2014b.
Reolid, M., Rivas, P., and Rodríguez-Tovar, F. J.: Toarcian ammonitico
rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern
Spain): paleoenvironmental reconstruction, Facies, 61, 22,
https://doi.org/10.1007/s10347-015-0447-3, 2015.
Reolid, M., Sánchez-Quiñónez, C. A., Alegret, L., and Molina, E.:
The biotic crisis across the Oceanic Anoxic Event 2: Palaeoenvironmental
inferences based on foraminifera and geochemical proxies from the South
Iberian Palaeomargin, Cret. Res., 60, 1–27, 2016.
Reolid, M., Molina, J. M., Nieto, L. M., and Rodríguez-Tovar, F. J.: The
Toarcian Oceanic Anoxic Event in the South Iberian Palaeomargin, Springer
Briefs in Earth Sciences, 122 pp., 2018.
Reolid, M., Duarte, L. V., and Rita, P.: Changes in foraminiferal assemblages
and environmental conditions during the T-OAE (Early Jurassic) in the
northern Lusitanian Basin, Portugal, Palaeogeogr. Palaeocl., 520, 30–43, 2019a.
Reolid, M., Copestake, P., and Johnson, B.: Foraminiferal assemblages,
extinctions and appearances associated with the Early Toarcian Oceanic
Anoxic Event in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin,
United Kingdom, Palaeogeogr. Palaeocl., 532, 109277,
https://doi.org/10.1016/j.palaeo.2019.109277, 2019b.
Reolid, M., Mattioli, E., Duarte, L. V., and Marok, A.: The Toarcian Oceanic
Anoxic Event and the Jenkyns Event (IGCP-655 final report), Episodes 43,
833–844, https://doi.org/10.18814/epiiugs/2019/019018, 2020a.
Reolid, M., Iwańczuk, J., Mattioli, E., and Abad, I.: Integration of
gamma ray spectrometry, magnetic susceptibility and calcareous nannofossils
for interpreting environmental perturbations: An example from the Jenkyns
Event (lower Toarcian) from South Iberian Palaeomargin (Median Subbetic, SE
Spain), Palaeogeogr. Palaeocl., 560,
https://doi.org/10.1016/j.palaeo.2020.110031, 2020b.
Rey, J., Bonnet, L., Cubaynes, R., Qajoun, A., and Ruget, C.: Sequence
stratigraphy and biological signals: statistical studies of benthic
foraminifera from Liassic series, Palaeogeogr. Palaeocl.,
111, 149–171, 1994.
Riegraf, W.: Mikrofauna, Biostratigraphie und Fazies im Unteren Toarcium
Sudwestdeutschlands und Vergleiche mit benachbarten Gebieten, Tubinger
Mikropaläontologische Mitteilungen, 3, 1–232, 1985.
Rita, P., Reolid, M., and Duarte, L. V.: Benthic foraminiferal assemblages
record major environmental perturbations during the Late Pliensbachian –
Early Toarcian interval in the Peniche GSSP, Portugal, Palaeogeogr. Palaeocl., 454, 267–281, 2016.
Rodrigues, B., Silva, R. L., Reolid, M., Mendonca Filho, J. G., and Duarte,
L. V.: Sedimentary organic matter and δ13Ckerogen variation
on the southern Iberian palaeomargin (Betic Cordillera, SE Spain) during the
latest Pliensbachian-Early Toarcian, Palaeogeogr. Palaeocl., 534, 109342, https://doi.org/10.1016/j.palaeo.2019.109342, 2019.
Rodríguez-Tovar, F. J. and Reolid, M.: Environmental conditions during
the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys:
influence of the regional contexto n a global phenomenon, Bull. Geosci., 66,
697–712, 2013.
Rodríguez-Tovar, F. J. and Uchman, A.: Ichnofabric evidence for the lack
of bottom anoxia during the Lower Toarcian Oceanic Anoxic Event (T-OAE) in
the Fuente de la Vidriera section, Betic Cordillera, Spain, Palaios, 25,
576–587, 2010.
Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., and Schwark,
L.: The Posidonia Shale (Lower Toarcian) of SW Germany: an oxygen-depleted
ecosystem controlled by sea-level and palaeoclimate, Palaeogeogr. Palaeocl., 165, 27–52, 2001.
Rosales, I., Quesada, S., and Robles, S.: Paleotemperature variations of
Early Jurassic seawater recorded in geochemical trends of belemnites from
the Basque-Cantabrian Basin, northern Spain, Palaeogeogr. Palaeocl., 203, 253–275, 2004.
Ruebsam, W., Müller, T., Kovacs, J., Palfy, J., and Schwark, L.:
Environmental response to the early Toarcian carbon cycle and climate
perturbation in the northeastern part of the West Tethys shelf, Gond. Res.,
59, 144–158, 2018.
Ruebsam, W., Reolid, M., and Schwark, L.: δ13C of terrestrial
vegetation records Toarcian CO2 and climate gradients, Sci. Rep.-UK, 10,
117, https://doi.org/10.1038/s41598-019-56710-6, 2020a.
Ruebsam, W., Reolid, M., Marok, A., and Schwark, L.: Drivers of benthic
extinction during the early Toarcian (Early Jurassic) at the northern
Gondwana paleomargin: implications for paleoceanographic conditions,
Earth-Sci. Rev., 203, 103117, https://doi.org/10.1016/j.earscirev.2020.103117,
2020b.
Ruebsam, W., Reolid, M., Sabatino, N., Masetti, D., and Schwark, L.: Molecular
paleothermometry of the early Toarcian climate perturbation, Global Planet.
Change, 195, 103351, https://doi.org/10.1016/j.gloplacha.2020.103351, 2020c.
Sælen, G., Doyle, P., and Talbot, M. R.: Stable-isotope analyses of
belemnite rostra from the Whitby Mudstone Fm, England: surface water
conditions during deposition of a marine black shale, Palaios, 11, 97–117,
1996.
Sælen, G., Tyson, R. V., Telnæs, N., and Talbot, M. R.: Contrasting
watermass conditions during deposition of the Whitby Mudstone (Lower
Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK, Palaeoecol.
Palaeogeogr., 163, 163–196, 2000.
Sjoerdsma, P. G. and Van der Zwaan, G. J.: Simulating the effect of changing
organic flux and oxygen content on the distribution of benthic foraminifers,
Mar. Micropaleontol., 19, 1–2, 1992.
Sohn, I. G.: Paleozoic species of Bairdia and related genera: revision of some
Paleozoic ostracod genera, U.S. Geological Survey Prof. Pap., 330-B,
107–160, 1960.
Soulimane, C., Reolid, M., Rita, P., Marok, A., and Duarte, L. V.: Uppermost
Pliensbachian-lowermost Toarcian ostracod assemblages from the Western
Tethys: Comparison between Traras Mountains (Algeria), Subbetic (Spain), and
Algarve (Portugal), Ann. Paleontol., 4, 251–269, 2017a.
Soulimane, C., Reolid, M., and Marok, A.: Ostracod assemblages from the
uppermost Pliensbachian and Lower Toarcian of the Traras Mountains (Tlemcen
Domain, north Algeria), Arab. J. Geosci., 10, 393,
https://doi.org/10.1007/s12517-017-3180-0, 2017b.
Soulimane, C., Marok, A., and Reolid, M.: Similarity analysis of ostracoda
faunas in the Western Tethys during the Late Pliensbachian-Early Toarcian
(Early Jurassic), Arab. J. Geosci., 13, 136,
https://doi.org/10.1007/s12517-020-5178-2, 2020.
Soussi, M. and Ben Ismail, M. H.: Platform collapse and pelagic seamount
facies: Jurassic development of central Tunisia, Sediment. Geol., 133, 93–113,
2000.
Storm, M. S., Hesselbo, S. P., Jenkyns, H. C., Ruhl, M., Ullmann, C. V., Xu, W.,
Leng, M., Riding, J., and Gorbanenko, O.: Orbital pacing and secular
evolution of the Early Jurassic carbon cycle, P. Natl. Acad. Sci. USA, 117, 3974–3982, https://doi.org/10.1073/pnas.1912094117, 2020.
Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte, L. V., and Mailliot,
S.: Duration of the Early Toarcian carbon isotope excursion deduced from
spectral analysis: consequence for its possible causes, Earth Planet. Sc.
Lett., 267, 666–679, 2008.
Suan, G., Mattioli, E., Pittet, B., Lecuyer, C., Suchéras-Marx, B.,
Duarte, L. V., Philippe, M., Reggiani, L., and Martineau, F.: Secular
environmental precursors to Early Toarcian (Jurassic) extreme climate
changes, Earth Planet. Sc. Lett., 290, 448–458, 2010.
Suan, G., Nikitenko, B. L., Rogov, M. A., Baudin, F., Spangenberg, J. E.,
Knyazev, V. G., Glinskikh, L. A., Goryacheva, A. A., Adatte, T., Riding, J. B.,
Follmi, K. B., Pittet, B., Mattioli, E., and Lecuyer, C.: Polar record of
Early Jurassic massive carbon injection, Earth Planet. Sc. Lett., 312,
102–113, 2011.
Suan, G., Rulleau, L., Mattioli, E., Suchéras-Marx, B., Rousselle, B.,
Pittet, B., Vincent, P., Martin, J. E., Lena, A., Spangenberg, J. E., and
Föllmi, K. B.: Palaeoenvironmental significance of Toarcian black shales
and event deposits from southern Beaujolais, France, Geol. Mag., 150,
728–742, 2013.
Suan, G., Schollhorn, I., Schlogl, J., Segit, T., Mattioli, E., Lecuyer, C.,
and Fourel, F.: Euxinic conditions and high sulfur burial near the European
shelf margin (Pieniny Klippen Belt, Slovakia) during the Toarcian oceanic
anoxic event, Global Planet. Change, 170, 246–259, 2018.
Teichert, S. and Nutzel, A.: Early Jurassic anoxia triggered the evolution
of the oldest holoplanktonic gastropod Coelodiscus minutus by means of heterochrony, Acta
Palaeontol. Pol., 60, 269–276, 2014.
Them, T. R., Gill, B. C., Selby, D., Grocke, D. R., Friedman, R. M., and Owens,
J. D.: Evidence for rapid weathering response to climatic warming during the
Toarcian Oceanic Anoxic Event, Sci. Rep.-UK, 7, 5003,
https://doi.org/10.1038/s41598-017-05307-y, 2017.
Them, T. R., Gill, B. C., Carutherns, A. H., Gerhardt, A. M., Grocke, D. R.,
Lyons, T. W., Marroquin, S. M., Nielsen, S. G., Alexandre, J. P. T., and Owens,
J. D.: Thallium isotopes reveal protracted anoxia during the Toarcian (Early
Jurassic) associated with volcanism, carbon burial, and mass extinction,
P. Natl. Acad. Sci. USA, 115, 6596–6601,
2018.
Thibault, N., Ruhl, M., Ullmann, C. V., Korte, C., Kemp, D. B., Gröcke,
D. R., and Hesselbo, S. P.: The wider context of the Lower Jurassic Toarcian
oceanic anoxic event in Yorkshire coastal outcrops, UK, P. Geol. Assoc.,
129, 372–391, 2018.
Thomson, J., Mercone, D., de Lange, G. J., and Van Santvoort, P. J. M.: Review
of recent advances in the interpretation of eastern Mediterranean sapropel
S1 from geochemical evidence, Mar. Geol., 153, 77–89, 1999.
Tremolada, F., van de Schootbrugge, B., and Erba, E.: Early Jurassic
schizosphaerellid crisis in Cantabria. Spain: Implications for calcification
rates and phytoplankton evolution across the Toarcian oceanic anoxic event,
Paleoceanography, 20, 1–11, https://doi.org/10.1029/2004PA001120, 2005.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232,
12–32, 2006.
Twitchett, R. J.: The Lilliput effect in the aftermath of the end-Permian
extinction event, Palaeogeogr. Palaeocl., 252, 132–144,
2007.
Tyszka, J.: Response of Middle Jurassic benthic foraminiferal morphogroups
to dysoxic/anoxic conditions in the Pieniny Klippen Basin, Polish
Carpathians, Palaeogeogr. Palaeocl., 110, 55–81, 1994.
Urbanek, A.: Biotic crisis in the history of upper Silurian graptoloids: a
palaeobiological model, Hist. Biol., 7, 29–50, 1993.
Van der Zwaan, G. J., Duijnstee, I. A. P., Den Dulk, M., Ernst, S. R., Jannink,
N. T., and Kouwenhoven, T. J.: Benthic foraminifers: proxies or problem? A
review of paleoecological concepts, Earth-Sci. Rev., 46, 213–236, 1999.
Vera, J. A.: Evolution of the South Iberian Continental Margin, Mémoir Mus.
Natl. Hist., 186, 109–143, 2001.
Wasim, S. M., Reolid, M., Talib, A., and Alvi, S. H.: Callovian to Oxfordian
benthic foraminifera from Ler Dome, Kutch Basin (Gujarat, India):
Systematic, ecostratigraphy and palaeoenvironmental reconstruction, Riv.
Ital. Paleontol. S., 126, 315–358, 2020.
Watkinson, M. P.: Triassic to Middle Jurassic sequences from the Lusitanian
Basin Portugal, and their equivalents in other North Atlantic margin basins,
PhD thesis, Open University Milton Keynes, 441 pp., 1989.
Whatley, R. C.: Ostracoda and palaeogeography, in: Ostracoda in the Earth Sciences, edited by: Deckker, P., Colin, J. P., and
Peypouquet, J. P., Elsevier,
Amsterdam, 1988.
Whatley, R. C.: The platycopid signal: a means of detecting kenoxic events
using Ostracoda, J. Micropalaeontol., 10, 181–183, 1991.
Whatley, R. C.: Ostracoda and oceanic palaeoxygen levels, Mitt. Hamburg.
Zool. Mus. Inst., 92, 337–353, 1995.
Whatley, R. C., Arias, C., and Comas Rengifo, M. J.: The use of Ostracoda in
detailing kenoxic events: an example from the Spanish Toarcian, Geobios, 17,
733–741, 1994.
Whatley, R., Pyne, R., and Wilkinson, I.: Ostracoda and palaeo-oxygen
levels, with particular reference to the Upper Cretaceous of East Anglia,
Palaeogeogr. Paleocl., 194, 355–386, 2003.
Wignall, P. B., Newton, R. J., and Little, C. T. S.: The timing of
paleoenvironmental change and cause-and-effect relationships during the
Early Jurassic mass extinction in Europe, Am. J. Sci., 305, 1014–1032,
2005.
Xu, W., Ruhl, M., Jenkyns, H. C., Leng, M. J., Huggett, J. M., Minisini, D.,
Ullmann, C. V., Riding, J. B., Weijers, J. W. H., Storm, M. S., Percival, L. M. E.,
Tosca, N. J., Idiz, E. F., Tegelaar, E. W., and Hesselbo, H. P.: Evolution of
the Toarcian (Early Jurassic) carbon cycle and global climatic controls on
local sedimentary processes (Cardigan Bay Basin, UK), Earth Planet. Sc.
Lett., 484, 396–411, 2018.
Zhang, J., Fan, T., Zhang, Y., Lash, G. G., Li, Y., and Wu, Y.: Heterogeneous
oceanic redox conditions through the Ediacaran-Cambrian boundary limited the
metazoan zonation, Sci. Rep.-UK, 7, 8850, https://doi.org/10.1038/s41598-017-07904-3, 2017.
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred,...