Articles | Volume 43, issue 2
https://doi.org/10.5194/jm-43-337-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-337-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distribution of two notodendrodid foraminiferal congeners in McMurdo Sound, Antarctica: an example of extreme regional endemism?
Andrea Habura
Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
Stephen P. Alexander
Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
Steven D. Hanes
Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, New York 13210, USA
Andrew J. Gooday
National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
Life Sciences Department, National History Museum, Cromwell Road, London SW7 5BD, UK
Jan Pawlowski
Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
Samuel S. Bowser
CORRESPONDING AUTHOR
Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
Related authors
No articles found.
Hasitha Nethupul, Magdalena Łącka, Marek Zajączkowski, Dhanushka Devendra, Ngoc-Loi Nguyen, Jan Pawłowski, and Joanna Pawłowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-3780, https://doi.org/10.5194/egusphere-2025-3780, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study addresses the gap by reconstructing the history of marine eukaryotic communities using sedaDNA metabarcoding analysis from Storfjordrenna, and the eukaryotic biodiversity remained relatively stable, with a notable exception during the transitions between major climatic intervals. Cercozoans and MAST emerged as dominant groups, highlighting their ecological flexibility and broad tolerance. Our findings highlight the potential of sedaDNA for reconstructing past eukaryotic communities.
Ewa Demianiuk, Mateusz Baca, Danijela Popović, Inès Barrenechea Angeles, Ngoc-Loi Nguyen, Jan Pawlowski, John B. Anderson, and Wojciech Majewski
Biogeosciences, 22, 2601–2620, https://doi.org/10.5194/bg-22-2601-2025, https://doi.org/10.5194/bg-22-2601-2025, 2025
Short summary
Short summary
Ancient foraminiferal DNA is studied in five Antarctic cores with sediments up to 25 kyr old. We use a standard and a new, more effective marker, which may become the next standard for paleoenvironmental studies. Much less diverse foraminifera occur on slopes of submarine moraines than in open-marine settings. Soft-walled foraminifera, not found in the fossil record, are especially abundant. There is no foraminiferal DNA in tills, suggesting its destruction during glacial redeposition.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Cited articles
Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S., and Trauth, M.: Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon, J. Foramin. Res., 29, 173–185, 1999.
Alve, E. and Goldstein, S. T.: Propagule transport as a key method of dispersal in benthic foraminifera (Protista), Limnol. Oceanogr., 48, 2163–2170, https://doi.org/10.4319/lo.2003.48.6.2163, 2003.
Alve, E. and Goldstein, S. T.: Dispersal, survival and delayed growth of benthic foraminiferal propagules, J. Sea Res., 63, 36–51, https://doi.org/10.1016/j.seares.2009.09.003, 2010.
Bowser, S. S.: Invasive activity of Allogromia pseudopodial networks: Skyllocytosis of a gelatin/agar gel, J. Protozool., 32, 9–12, https://doi.org/10.1111/j.1550-7408.1985.tb03005.x ,1985.
Bowser, S. S., Gooday, A. J., Alexander, S. P., and Bernhard, J. M.: Larger agglutinated foraminifera of McMurdo Sound, Antarctica: Are Astrammina rara and Notodendrodes antarctikos allogromiids incognito?, Mar. Micropaleontol., 26, 75–88, https://doi.org/10.1016/0377-8398(95)00024-0, 1995a.
Bowser, S. S., Kinoshita, R. K., Bernhard, J. M., and Hayden, J. H.: Agglutinated test morphogenesis in Astrammina rara, a giant foraminiferan protist from Explorers Cove, McMurdo Sound, Ant. J. US., 30, 161–162, https://doi.org/10.2113/0320364, 1995b.
Bowser, S. S., Bernhard, J. M., Habura, A., and Gooday, A. J.: Structure, taxonomy and ecology of Astrammina triangularis (Earland), an allogromiid-like agglutinated foraminifer from Explorers Cove, Antarctica, J. Foramin. Res., 32, 364–374, https://doi.org/10.2113/0320364, 2002.
Bowser, S. S., Habura, A., and Pawlowski, J.: Molecular evolution of Foraminifera, in: Genome Evolution in Eukaryotic Microbes, edited by: Katz, L. A. and Bhattacharya, D., Oxford University Press, 78–95, https://doi.org/10.1093/oso/9780198569749.003.0006, 2006.
Burns, J. A., Becker, K. P., Casagrande, D., Daniels, J., Roberts, P., Orenstein, E., Vogt, D. M., Teoh, Z. E., Wood, R., Yin, A. H., Genot, B., Gruber, D. F., Katija, K., Wood, R. J., and Phillips, B. T.: An in situ digital synthesis strategy for the discovery and description of ocean life, Sci. Adv., 10, eadj4960, https://doi.org/10.1126/sciadv.adj4960, 2024.
Buzas, M. A. and Culver, S. J.: Assembly, disassembly, and balance in marine paleocommunities, Palaios, 13, 263–275, https://doi.org/10.2307/3515449, 1998.
Broach, K., Miller, M. F., and Bowser, S. S.: Bioturbation by the common Antarctic scallop (Adamussium colbecki) and ophiuroid (Ophionotus victoriae) under multi-year sea ice: Ecologic and stratigraphic implications, Palaios, 31, 1–11, https://doi.org/10.2110/palo.2015.069, 2016.
Cedhagen, T.: Taxonomy and biology of Pelosina arborescens with comparative notes on Astrorhiza limicola (Foraminiferida), Ophelia, 37, 143–162, https://doi.org/10.1080/00785326.1993.10429914, 1993.
Conway, H., Hall, B. L., Denton, G. H., Gades, A. M. and Waddington, A. D.: Past and future grounding-line retreat of the West Antarctic Ice Sheet, Science, 286, 580–583, https://doi.org/10.1126/science.286.5438.280, 1999.
Cornelius, N. and Gooday, A. J.: “Live” (stained) deep-sea benthic foraminifera in the western Weddell Sea: trends in abundance, diversity and taxonomic composition in relation to water depth, Deep-sea Res. Pt. II, 51, 1571–1602, https://doi.org/10.1016/j.dsr2.2004.06.024, 2004.
Culver, S. J. and Buzas, M. A.: Patterns of occurrence of benthic foraminifera in time and space, in: The Adequacy of the Fossil Record, edited by: Donovan, S. K. and Paul, C. R. C., New York: Cambridge Univ. Press, New York, 207–226, ISBN-13: 978-0471969884, 1998.
Daly M., Rack F., and Zook, R.: Edwardsiella andrillae, a new species of Sea Anemone from Antarctic ice, PLOS ONE, 8, e83476, https://doi.org/10.1371/journal.pone.0083476, 2013.
Dayton, P. K. and Oliver, J. S.: Antarctic soft-bottom benthos in oligotrophic and eutrophic environments, Science, 197, 55–58, https://doi.org/10.1126/science.197.4298.55, 1977.
DeLaca, T. E.: Use of dissolved amino acids by the foraminifer, Notodendrodes antarctikos, Amer. Zool., 22, 683–690, 1982.
DeLaca, T. E., Lipps, J. H., and Hessler, R.: The morphology and ecology of a new large agglutinated Antarctic foraminifer (Textulariina: Notodendrodidae nov.), Zool. J. Linn. Soc.-Lond., 69, 205–224, https://doi.org/10.1111/j.1096-3642.1980.tb01123.x, 1980.
DeLaca, T. E., Karl, D. M., and Lipps, J. H.: The use of dissolved organic carbon by agglutinated benthic foraminifera, Nature, 289, 287–289, https://doi.org/10.1038/289287a0, 1981.
DeLaca, T. E., Bernhard, J. M., Reilly, A. A., and Bowser, S. S.: Notodendrodes hyalinosphaira (sp. nov.): Structure and autecology of an allogromiid-like agglutinated foraminifer, J. Foramin. Res., 32, 177–187, https://doi.org/10.2113/0320177, 2002.
Finlay, B. J. and Fenchel, T.: Cosmopolitan metapopulations of free-living eukaryotes, Protist, 155, 237–244, https://doi.org/10.1078/143446104774199619, 2004.
Foissner, W.: Biogeography and dispersal of micro-organisms: a review emphasizing protists, Acta Protozool., 45, 111–136, 2006.
Gooday, A. J. and Jorissen, F. J.: Benthic foraminiferal biogeography: Controls on global distribution patterns in deep-water settings, Annu. Rev. Mar. Sci., 4, 237–262, https://doi.org/10.1146/annurev-marine-120709-142737, 2012.
Gooday, A. J., Bowser, S. S., and Bernhard, J. M.: Benthic foraminiferal assemblages in Explorers Cove, Antarctica: A shallow-water site with deep-sea characteristics, Prog. Oceanogr., 37, 117–166, https://doi.org/10.1016/S0079-6611(96)00007-9, 1996.
Gooday, A. J., Cedhagen, T., Kamenskaya, O. E., and Cornelius, N.: The biodiversity and biogeography of komokiaceans and other enigmatic foraminiferan-like protists in the deep Southern Ocean, Deep-Sea Res. Pt. II, 54, 1691–1719, https://doi.org/10.1016/j.dsr2.2007.07.003, 2007.
Gooday, A. J., Rothe, N., Bowser, S. S., and Pawlowski, J.: Benthic Foraminifera, in: Biogeographic Atlas of the Southern Ocean, edited by: De Broyer C., Koubbi P., Griffiths H. J., Raymond B., Udekem d'Acoz, C. Van de Putte, A. P., Danis, B., David, B., Grant, S., Gutt, J., Held, C., Hosie, G., Huettmann F., Post, A., and Ropert-Coudert, Y., Scientific Committee on Antarctic Research, Cambridge, 74-82, ISBN-13: 978-0948277283, 2014.
Gupta, B. K. S. and Smith, L. E.: Modern benthic foraminifera of the Gulf of Mexico: a census report, J. Foramin. Res., 40, 247–265, https://doi.org/10.2113/gsjfr.40.3.247, 2010.
Habura, A., Pawlowski, J., Hanes, S. D., and Bowser, S. S.: Unexpected foraminiferal diversity revealed by small-subunit rDNA analysis of Antarctic sediment, J. Eukaryot. Microbiol., 51, 173–179, https://doi.org/10.1111/j.1550-7408.2004.tb00542.x, 2004a.
Habura, A., Rosen, D. R., and Bowser, S. S.: Predicted secondary structure of the foraminiferal SSU 3′ major domain reveals a molecular synapomorphy for granuloreticulosean protists, J. Eukaryot. Microbiol., 51, 464–471, https://doi.org/10.1111/j.1550-7408.2004.tb00397.x, 2004b.
Habura, A., Goldstein, S. T., Broderick, S., and Bowser, S. S.: A bush, not a tree: The extraordinary diversity of cold-water basal foraminiferans extends to warm-water environments, Limnol. Oceanogr., 53, 1339–1351, https://doi.org/10.2307/40058256, 2008.
Hancock, L. G., Walker, S. E., Perez-Huerta, A., and Bowser, S. S.: Population dynamics and parasite load of a foraminifer on its scallop host with their carbonate biomass contributions, PLOS ONE, 10, e0132534, https://doi.org/10.1371/journal.pone.0132534, 2015.
Hayward, B. W. and Gordon, D. P.: A new species of the agglutinated foraminifer Jullienella (Schizamminidae) from New Zealand, J. Foramin. Res., 14, 111–114, https://doi.org/10.2113/gsjfr.14.2.111, 1984.
Hayward, B. W. and Holzmann, M.: Biogeography and species durations of selected Cenozoic shallow and deep-water smaller calcareous benthic foraminifera – A review, J. Foramin. Res., 53, 192–213, https://doi.org/10.2113/gsjfr.53.3.192, 2023.
Hayward, B. W., Holzmann, M., Pawlowski, J., Parker, J. Kaushik, T., Toyofuku, M., and Tsuchiya, M.: Molecular and morphological taxonomy of living Ammonia and related taxa (Foraminifera) and their biogeography, Micropaleontology, 67, 109–313, https://doi.org/10.47894/mpal.67.2-3.01, 2021.
Kamenskaya, O. E., Bagirov, N. E., and Simdianov, T. G.: Luffammina atlantica gen. et sp. nov. (Foraminiferida, Arboramminidae) from the hydrothermal area rainbow (Mid-Atlantic Ridge), in: Adaptational aspects of the evolution of marine Fauna, edited by: Kuznetsov, A. P. and Zezina, O. N., Collected Proceedings, VNIRO Publishers, Moscow, 144–152, 2002.
Langer, M., Weinmann, A. E., Makled, W. A., Könen, J., and Gooday, A. J.: New observations on test architecture and construction of Jullienella foetida Schlumberger, 1890, the largest shallow-water agglutinated foraminifer in modern oceans, PeerJ, 10, e12884, https://doi.org/10.7717/peerj.12884, 2022.
Majewski, W., Bowser, S. S., and Pawlowski, J.: Widespread intra-specific genetic homogeneity of coastal Antarctic benthic Foraminifera, Polar Biol., 38, 2047–2058, https://doi.org/10.1007/s00300-015-1765-1, 2015.
McClain, C. R. and Hardy, S. M.: The dynamics of biogeographic ranges in the deep sea, P. R. Soc. B, 277, 3533–3546, https://doi.org/10.1098/rspb.2010.1057, 2010.
McClintock, J. B., Tackett, L. B., and Bowser, S. S.: Video observations on non-swimming valve-claps in the Antarctic scallop Adamussium colbecki, Ant. Sci., 22, 173–174, https://doi.org/10.1017/S0954102009990757, 2010.
McIlroy, D., Green, O. R., and Brasier, M. D.: Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms, Lethaia, 34, 13–29, https://doi.org/10.1080/002411601300068170, 2001.
Miller, M. F., Fan, Z., and Bowser, S. S.: Sediments beneath multi-year sea ice: Delivery by deltaic and aeolian processes, J. Sediment. Res., 85, 301–314, https://doi.org/10.2110/jsr.2015.20, 2015.
Murray, J.: Ecology and Applications of Benthic Foraminifera, Cambridge University Press, Cambridge, UK, ISBN-13: 978-0-521-8283-0, 2006.
Murray, J. W.: Living benthic foraminifera: biogeographical distributions and the significance of rare morphospecies, J. Micropalaeontol., 32, 1–58, https://doi.org/10.1144/jmpaleo2012-010, 2013.
Nørvang, A.: Schizamminidae, a new family of foraminifera, Atlantide Reports, 6, 169–201, 1961.
Pawlowski, J. and Holzmann, M.: Diversity and geographic distribution of benthic foraminifera: a molecular perspective, Biodivers. Conserv., 17, 317–328, https://doi.org/10.1007/s10531-007-9253-8, 2008.
Pawlowski, J., Fahrni, J., and Bowser, S. S.: Phylogenetic analysis and genetic diversity of Notodendrodes hyalinosphaira, J. Foramin. Res., 32, 173–176, https://doi.org/10.2113/0320173, 2002a.
Pawlowski, J., Fahrni, J. F., Brykczynska, U., Habura, A., and Bowser, S. S.: Molecular data reveal high taxonomic diversity of allogromiid foraminifera in Explorers Cove (McMurdo Sound, Antarctica), Polar Biol., 25, 96–105, https://doi.org/10.1007/s003000100317, 2002b.
Pawlowski, J., Fahrni, J. F., Guiard, J., Conlan, K., Hardecker, J., Habura, A., and Bowser, S. S.: Allogromiid foraminifera and gromiids from under the Ross Ice Shelf: morphological and molecular diversity, Polar Biol., 28, 514–522, https://doi.org/10.1007/s00300-005-0717-6, 2005.
Pawlowski, J., Fontaine, D., Aranda da Silva, A., and Guiard, J.: Novel lineages of Southern Ocean deep-sea foraminifera revealed by environmental DNA sequencing, Deep-Sea Res. Pt. II, 58, 1996–2003, https://doi.org/10.1016/j.dsr2.2011.01.009, 2011.
Pawlowski, J., Adl, S., Audic, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S., Cepicka, I., Decelle, J., Dunthorn, M., Fiore, A. M., Gile, G. H., Holzmann, M., Jahn, R., Keeling, P., Kostka, M., Kudryavtsev, A., Lara, E., Le Gall. L,, Lukes, J., Mann, D., Mitchell, E., Nitsche, F., Romeralo, M., Saunders, G. W., Simpson, A. G. B., Smirnov, A.V., Spouge, J., Stern, R. F., Stoeck, T., Zimmermann, J., Schindel, D., and de Vargas, C.: CBOL Protist Working Group: Barcoding eukaryotic richness beyond the animal, plant and fungal kingdoms, PLOS Biol., 10, e1001419, https://doi.org/10.1371/journal.pbio.1001419, 2012.
Pedrós-Alió, C.: Marine microbial diversity: can it be determined?, Trends Microbiol., 14, 257–263, https://doi.org/10.1016/j.tim.2006.04.007, 2006.
Pollock, N. W. and Bowser, S. S.: Scuba collection of benthic foraminifera in Explorers Cove, Antarctica: An accessible model of the deep-ocean benthos?, in: Diving for Science...1995: Proceedings of the American Academy of Underwater Sciences Fifteenth Annual Scientific Diving Symposium, edited by: Harper, D. E., American Academy of Underwater Sciences, Scripps Institution of Oceanography, La Jolla, California, USA, 4–8 October, 63–74, 1995.
Prothro, L. O., Majewski, W., Yokoyama, Y., Simkins, L. M., Anderson, J. B., Yamane, M., Miyairi, Y., and Ohkouchi, N.: Timing and pathways of East Antarctic Ice Sheet retreat, Quaternary Sci. Rev., 230, 106166, https://doi.org/10.1016/j.quascirev.2020.106166, 2020.
Sen Gupta, B. K. and Smith, L. E.: Modern benthic foraminifera of the Gulf of Mexico: A census report, J. Foramin. Res., 40, 247–265, https://doi.org/10.2113/gsjfr.40.3.247, 2010.
Shires, R., Gooday, A. J., and Jones, A. R.: A new large agglutinated foraminifer (Arboramminidae n. fam.) from an oligotrophic site in the abyssal Northeast Atlantic, J. Foramin. Res., 24, 149–157, https://doi.org/10.2113/gsjfr.24.3.149, 1994.
Staley, J. T.: Biodiversity: are microbial species threatened?, Curr. Opin. Biotech., 8, 340–345, https://doi.org/10.1016/S0958-1669(97)80014-6, 1997.
Suhr, S. B., Alexander, S. P., Gooday, A. J., Pond, D. W., and Bowser, S. S.: Trophic modes of large Antarctic Foraminifera: Roles of carnivory, omnivory, and detritivory, Mar. Ecol. Prog. Ser., 371, 155–164, https://doi.org/10.3354/meps07693, 2008.
Tendal, O. S. and Cedhagen, T.: Schizammina andamana n. sp., a large foraminiferan (Protozoa, Granuloreticulosa) from the shelf west of Thailand, Phuket Marine Biological Center Research Bulletin, 68, 11–19, https://api.semanticscholar.org/CorpusID:73637744 (last access: 16 August 2024), 2007.
Violanti, D.: Taxonomy and distribution of recent benthic foraminifers from Terra Nova Bay (Ross Sea, Antarctica), Oceanographic Campaign 1987/1988, Paleontographia Italica, 83, 25–71, 1996.
Vogel, S.: Life in Moving Fluids, 2nd Edn., Princeton University Press, Princeton, New Jersey, USA, 467 pp., ISBN: 0-691-03485-0, 1994.
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica....