Articles | Volume 40, issue 1
https://doi.org/10.5194/jm-40-61-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-40-61-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
UMR 6112 LPG-BIAF Recent and Fossil Bio-Indicators, University of
Angers, University of Nantes, 2 Boulevard Lavoisier, 49045 Angers, France
Magali Schweizer
UMR 6112 LPG-BIAF Recent and Fossil Bio-Indicators, University of
Angers, University of Nantes, 2 Boulevard Lavoisier, 49045 Angers, France
Aurélia Mouret
UMR 6112 LPG-BIAF Recent and Fossil Bio-Indicators, University of
Angers, University of Nantes, 2 Boulevard Lavoisier, 49045 Angers, France
Sophie Quinchard
UMR 6112 LPG-BIAF Recent and Fossil Bio-Indicators, University of
Angers, University of Nantes, 2 Boulevard Lavoisier, 49045 Angers, France
Salha A. Saad
School of Life Sciences, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK
Vincent M. P. Bouchet
Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187, LOG,
Laboratoire d'Océanologie et de Géosciences, Station Marine de
Wimereux, 59000, Lille, France
Christopher M. Wade
School of Life Sciences, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK
Frans J. Jorissen
UMR 6112 LPG-BIAF Recent and Fossil Bio-Indicators, University of
Angers, University of Nantes, 2 Boulevard Lavoisier, 49045 Angers, France
Related authors
Julien Richirt, Satoshi Okada, Yoshiyuki Ishitani, Katsuyuki Uematsu, Akihiro Tame, Kaya Oda, Noriyuki Isobe, Toyoho Ishimura, Masashi Tsuchiya, and Hidetaka Nomaki
Biogeosciences, 21, 3271–3288, https://doi.org/10.5194/bg-21-3271-2024, https://doi.org/10.5194/bg-21-3271-2024, 2024
Short summary
Short summary
We report the first benthic foraminifera with a composite test (i.e. shell) made of opal, which coats the inner part of the calcitic layer. Using comprehensive techniques, we describe the morphology and the composition of this novel opal layer and provide evidence that the opal is precipitated by the foraminifera itself. We explore the potential precipitation process and function(s) of this composite test and further discuss the possible implications for palaeoceanographic reconstructions.
Vincent M. P. Bouchet, Silvia Helena de Mello e Sousa, Carla Bonetti, Leticia Burone, Pierre Belart, Wania Duleba, Fabio Francescangeli, Fabrizio Frontalini, Lazaro Laut, Débora S. Raposo, André R. Rodrigues, Sibelle Trevisan Disaró, Daniel Vicente Pupo, Fabrício Leandro Damasceno, Jean-Charles Pavard, and Maria Virgínia Alves Martins
J. Micropalaeontol., 44, 237–261, https://doi.org/10.5194/jm-44-237-2025, https://doi.org/10.5194/jm-44-237-2025, 2025
Short summary
Short summary
This study evaluates benthic foraminifera as indicators of environmental health in Brazil’s coastal waters and tests Foram-AMBI using a regional species list and criteria for ecological quality status (EcoQS). A total of 95 species were classified into five groups based on their response to total organic carbon. Data from Sepetiba Bay and Guanabara Bay validated these groups, showing that Foram-AMBI accurately reflects ecological conditions. The study highlights the importance of regional species lists for biomonitoring.
Irina Polovodova Asteman, Emilie Jaffré, Agata Olejnik, Maria Holzmann, Mary McGann, Kjell Nordberg, Jean-Charles Pavard, Delia Rösel, and Magali Schweizer
J. Micropalaeontol., 44, 119–143, https://doi.org/10.5194/jm-44-119-2025, https://doi.org/10.5194/jm-44-119-2025, 2025
Short summary
Short summary
Small boat harbours are suggested to cause pollution and alien species introductions. Here we analysed surface sediments in Hinsholmskilen harbour (Sweden) for benthic foraminifera and potentially toxic elements. Molecular and morphological analyses of foraminifera show the presence of two alien species, Trochammina hadai and Ammonia confertitesta, whilst pollution is mostly low for Cd, Co, Ni, and Pb. In contrast, As, Zn, Cu, Hg, and Cr have high levels due to the use of these elements in boat paints.
Julien Richirt, Satoshi Okada, Yoshiyuki Ishitani, Katsuyuki Uematsu, Akihiro Tame, Kaya Oda, Noriyuki Isobe, Toyoho Ishimura, Masashi Tsuchiya, and Hidetaka Nomaki
Biogeosciences, 21, 3271–3288, https://doi.org/10.5194/bg-21-3271-2024, https://doi.org/10.5194/bg-21-3271-2024, 2024
Short summary
Short summary
We report the first benthic foraminifera with a composite test (i.e. shell) made of opal, which coats the inner part of the calcitic layer. Using comprehensive techniques, we describe the morphology and the composition of this novel opal layer and provide evidence that the opal is precipitated by the foraminifera itself. We explore the potential precipitation process and function(s) of this composite test and further discuss the possible implications for palaeoceanographic reconstructions.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
Biogeosciences, 20, 4875–4891, https://doi.org/10.5194/bg-20-4875-2023, https://doi.org/10.5194/bg-20-4875-2023, 2023
Short summary
Short summary
Benthic foraminifera are single-cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling, we show here that foraminiferal burrow formation increases the oxygen penetration depth in the sediment, leading to a change in the structure of the prokaryotic community.
Corentin Guilhermic, Maria Pia Nardelli, Aurélia Mouret, Damien Le Moigne, and Hélène Howa
Biogeosciences, 20, 3329–3351, https://doi.org/10.5194/bg-20-3329-2023, https://doi.org/10.5194/bg-20-3329-2023, 2023
Short summary
Short summary
Coastal seas experience sediment discharges whose intensity and frequency can strongly be affected by human activities and climate change. We analysed the response of benthic species in an experimental set-up. After the burial under a single thick layer of sediment or multiple thin layers at different times, the analysed species migrate rapidly towards the surface. A stronger effect of a single thick deposit on standing stocks and biodiversity is visible compared to frequent low-sediment inputs.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Cited articles
Alve, E.: Benthic foraminiferal responses to estuarine pollution; a review,
J. Foramin. Res., 25, 190–203,
https://doi.org/10.2113/gsjfr.25.3.190, 1995.
Alve, E. and Goldstein, S. T.: Dispersal, survival and delayed growth of
benthic foraminiferal propagules, J. Sea Res., 63, 36–51,
https://doi.org/10.1016/j.seares.2009.09.003, 2010.
Bailly Du Bois, P. and Dumas, F.: TRANSMER, hydrodynamic model for medium- and
long-term simulation of radionuclides transfers in the English Channel and
southern North Sea, Radioprotection, 40, S575–S580,
https://doi.org/10.1051/radiopro:2005s1-084, 2005.
Barnay, A., Ellien, C., Gentil, F., and Thiébaut, E.: A model study on
variations in larval supply: are populations of the polychaete Owenia fusiformis in the
English Channel open or closed?, Helgoland Mar. Res., 56, 229,
https://doi.org/10.1007/s10152-002-0122-2, 2003.
Bird, C., Schweizer, M., Roberts, A., Austin, W. E. N., Knudsen, K. L.,
Evans, K. M., Filipsson, H. L., Sayer, M. D. J., Geslin, E., and Darling, K.
F.: The genetic diversity, morphology, biogeography, and taxonomic
designations of Ammonia (Foraminifera) in the Northeast Atlantic, Mar.
Micropaleosntol., https://doi.org/10.1016/j.marmicro.2019.02.001, 2020.
Bouchet, V. M. P., Debenay, J.-P., Sauriau, P.-G., Radford-Knoery, J., and
Soletchnik, P.: Effects of short-term environmental disturbances on living
benthic foraminifera during the Pacific oyster summer mortality in the
Marennes-Oléron Bay (France), Mar. Environ. Res., 64,
358–383, https://doi.org/10.1016/j.marenvres.2007.02.007, 2007.
Bradshaw, J. S.: Laboratory Studies on the Rate of Growth of the
Foraminifer, “Streblus beccarii (Linné) var. tepida (Cushman)”, J. Paleontol.,
31, 1138–1147, 1957.
Brunner, C. A. and Biscaye, P. E.: Storm-driven transport of foraminifers
from the shelf to the upper slope, southern Middle Atlantic Bight,
Cont. Shelf Res., 17, 491–508,
https://doi.org/10.1016/S0278-4343(96)00043-X, 1997.
Brunner, C. A. and Biscaye, P. E.: Production and resuspension of planktonic
foraminifers at the shelf break of the Southern Middle Atlantic Bight, Deep-Sea Res. Pt. I, 50, 247–268,
https://doi.org/10.1016/S0967-0637(02)00165-6, 2003.
Calvo-Marcilese, L. and Langer, M. R.: Breaching biogeographic barriers: the
invasion of Haynesina germanica (Foraminifera, Protista) in the Bahía Blanca estuary,
Argentina, Biol. Invasions, 12, 3299–3306,
https://doi.org/10.1007/s10530-010-9723-x, 2010.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the Baltic Sea during the last century, P. Natl. Acad. Sci. USA, 111,
5628–5633, https://doi.org/10.1073/pnas.1323156111, 2014.
Cearreta, A.: Population dynamics of benthic foraminifera in the Santoña
estuary, Spain, Revue de Paléobiologie, 2, 721–724, 1988.
Choquel, C., Geslin, E, Metzger, E., Houliez, E., Jesus, B., Prins, A., Jauffrais, T., Bénéteau, E., and Mouret, A.: Spatiotemporal dynamics of living benthic foraminifera revealed by multiple environmental parameters and in situ trophic model in intertidal mudflat (Bourgneuf Bay, France), in preparation, 2021.
Cugier, P. and Le Hir, P.: Development of a 3D Hydrodynamic Model for
Coastal Ecosystem Modelling. Application to the Plume of the Seine River
(France), Estuar. Coast. Shelf S., 55, 673–695,
https://doi.org/10.1006/ecss.2001.0875, 2002.
Dauvin, J., Rius, A. T., and Ruellet, T.: Recent expansion of two invasive crabs
species Hemigrapsus sanguineus (de Haan, 1835) and H. takanoi Asakura and Watanabe 2005 along the
Opal Coast, France, https://doi.org/10.3391/AI.2009.4.3.3, 2009.
Dauvin, J.-C.: Are the eastern and western basins of the English Channel two
separate ecosystems?, Mar. Pollut. Bull., 64, 463–471,
https://doi.org/10.1016/j.marpolbul.2011.12.010, 2012.
Dauvin, J.-C.: History of benthic research in the English Channel: From
general patterns of communities to habitat mosaic description, J.
Sea Res., 100, 32–45, https://doi.org/10.1016/j.seares.2014.11.005,
2015.
Dupont, L., Jollivet, D., and Viard, F.: High genetic diversity and ephemeral
drift effects in a successful introduced mollusc (Crepidula fornicata: Gastropoda), Mar.
Ecol.-Prog. Ser., 253, 183–195, https://doi.org/10.3354/meps253183,
2003.
Dupont, L., Ellien, C., and Viard, F.: Limits to gene flow in the slipper
limpet Crepidula fornicata as revealed by microsatellite data and a larval dispersal model,
Mar. Ecol.-Prog. Ser., 349, 125–138,
https://doi.org/10.3354/meps07098, 2007.
Ellien, C., Thiebaut, É., Barnay, A.-S., Dauvin, J.-C., Gentil, F., and
Salomon, J.-C.: The influence of variability in larval dispersal on the
dynamics of a marine metapopulation in the eastern Channel, Oceanol.
Acta, 23, 423–442, https://doi.org/10.1016/S0399-1784(00)00136-5, 2000.
Fouet, M., Heliot, S., Singer, D., Barras, C., and Jorissen, F. J.: How to adapt foraminiferal index to estuaries? Application of the MII index, in preparation, 2021.
Geslin, E., Barras, C., Langlet, D., Nardelli, M. P., Kim, J.-H., Bonnin,
J., Metzger, E., and Jorissen, F. J.: Survival, Reproduction and
Calcification of Three Benthic Foraminiferal Species in Response to
Experimentally Induced Hypoxia, in: Approaches to Study Living Foraminifera:
Collection, Maintenance and Experimentation, edited by: Kitazato, H. and
Bernhard, J. M., 163–193, Springer Japan, Tokyo,
https://doi.org/10.1007/978-4-431-54388-6_10, 2014.
Gothland, M., Dauvin, J. C., Denis, L., Dufossé, F., Jobert, S., Ovaert,
J., Pezy, J. P., Tous Rius, A., and Spilmont, N.: Biological traits explain
the distribution and colonisation ability of the invasive shore crab
Hemigrapsus takanoi, Estuar. Coast. Shelf S., 142, 41–49,
https://doi.org/10.1016/j.ecss.2014.03.012, 2014.
Gustafsson, M. and Nordberg, K.: Benthic foraminifera and their response to
hydrography, periodic hypoxic conditions and primary production in the
Koljö fjord on the Swedish west coast, J. Sea Res., 41,
163–178, https://doi.org/10.1016/S1385-1101(99)00002-7, 1999.
Hayward, B. W., Holzmann, M., Grenfell, H. R., Pawlowski, J., and Triggs, C.
M.: Morphological distinction of molecular types in Ammonia – towards a taxonomic
revision of the world's most commonly misidentified foraminifera, Mar.
Micropaleontol., 50, 237–271,
https://doi.org/10.1016/S0377-8398(03)00074-4, 2004.
Hayward, B. W., Holzmann, M., and Tsuchiya, M.: Combined Molecular and
Morphological Taxonomy of the Beccarii/T3 Group of the Foraminiferal Genus
Ammonia, J. Foramin. Res., 49, 367–389,
https://doi.org/10.2113/gsjfr.49.4.367, 2019.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern Planktonic
Foraminifera, Springer-Verlag, New York, 363 pp., 1989.
Hermelin, J. O. R.: Distribution of Holocene benthic foraminifera in the
Baltic Sea, J. Foramin. Res., 17, 62–73,
https://doi.org/10.2113/gsjfr.17.1.62, 1987.
Holzmann, M.: Species Concept in Foraminifera: Ammonia as a Case Study,
Micropaleontology, 46, 21–37, 2000.
Holzmann, M. and Pawlowski, J.: Molecular, morphological and ecological
evidence for species recognition in Ammonia (Foraminifera), J.
Foramin. Res., 27, 311–318,
https://doi.org/10.2113/gsjfr.27.4.311, 1997.
Holzmann, M. and Pawlowski, J.: Taxonomic relationships in the genus
Ammonia (Foraminifera) based on ribosomal DNA sequences, J.
Micropalaeontol., 19, 85–95, https://doi.org/10.1144/jm.19.1.85, 2000.
Holzmann, M., Piller, W., and Pawlowski, J.: Sequence variations in the
large-subunit ribosomal RNA gene of Ammonia (Foraminifera, Protozoa) and their
evolutionary implications, J. Mol. Evol., 43, 145–151,
https://doi.org/10.1007/BF02337359, 1996.
Horton, B. P. and Murray, J. W.: The roles of elevation and salinity as
primary controls on living foraminiferal distributions: Cowpen Marsh, Tees
Estuary, UK, Mar. Micropaleontol., 63, 169–186,
https://doi.org/10.1016/j.marmicro.2006.11.006, 2007.
Jones, R. W.: Foraminifera and their Applications, Cambridge University
Press, New York, 391 pp., 2014.
Katz, M. E., Cramer, B. S., Franzese, A., Hönisch, B., Miller, K. G.,
Rosenthal, Y., and Wright, J. D.: Traditional and emerging geochemical
proxies in foraminifera, J. Foramin. Res., 40, 165–192,
https://doi.org/10.2113/gsjfr.40.2.165, 2010.
Korsun, S. and Hald, M.: Seasonal dynamics of benthic foraminifera in a
glacially fed fjord of Svalbard, European Arctic, J. Foramin.
Res., 30, 251–271, https://doi.org/10.2113/0300251, 2000.
Kuhnt, T., Howa, H., Schmidt, S., Marié, L., and Schiebel, R.: Flux
dynamics of planktic foraminiferal tests in the south-eastern Bay of Biscay
(northeast Atlantic margin), J. Marine Syst., 109–110,
S169–S181, https://doi.org/10.1016/j.jmarsys.2011.11.026, 2013.
Langer, M. and Leppig, U.: Molecular phylogenetic status of Ammonia catesbyana (D'Orbigny,
1839), an intertidal foraminifer from the North Sea, Neues Jahrb.
Geol. P. M., 9, 545–556,
https://doi.org/10.1127/njgpm/2000/2000/545, 2000.
Larsonneur, C., Bouysse, P., and Auffret, J.-P.: The superficial sediments of
the English Channel and its Western Approaches, Sedimentology, 29,
851–864, https://doi.org/10.1111/j.1365-3091.1982.tb00088.x, 1982.
Lefebvre, A., Ellien, C., Davoult, D., Thiébaut, E., and Salomon, J. C.:
Pelagic dispersal of the brittle-star Ophiothrix fragilis larvae in a megatidal area (English
Channel, France) examined using an advection/diffusion model, Estuar.
Coast. Shelf S., 57, 421–433,
https://doi.org/10.1016/S0272-7714(02)00371-2, 2003.
Lutze, G. F.: Jahresgang der Foraminiferen-Fauna in der Bottsand-Lagune
(westliche Ostsee), MEYNIANA, 18, 13–20,
https://doi.org/10.2312/meyniana.1968.18.13, 1968.
Morard, R., Vollmar, N. M., Greco, M., and Kucera, M.: Unassigned diversity
of planktonic foraminifera from environmental sequencing revealed as known
but neglected species, PLOS ONE, 14, e0213936,
https://doi.org/10.1371/journal.pone.0213936, 2019.
Morvan, J., Debenay, J.-P., Jorissen, F., Redois, F., Bénéteau, E.,
Delplancke, M., and Amato, A.-S.: Patchiness and life cycle of intertidal
foraminifera: Implication for environmental and paleoenvironmental
interpretation, Mar. Micropaleontol., 61, 131–154,
https://doi.org/10.1016/j.marmicro.2006.05.009, 2006.
Murray, J. W.: Population dynamics of benthic foraminifera; results from the
Exe Estuary, England, J. Foramin. Res., 13, 1–12,
https://doi.org/10.2113/gsjfr.13.1.1, 1983.
Murray, J. W.: Distribution and population dynamics of benthic foraminifera
from the southern North Sea, J. Foramin. Res., 22,
114–128, https://doi.org/10.2113/gsjfr.22.2.114, 1992.
Murray, J. W.: Ecology and Applications of Benthic Foraminifera, Cambridge
University Press, Cambridge, 426 pp., 2006.
Murray, J. W. and Alve, E.: Major aspects of foraminiferal variability
(standing crop and biomass) on a monthly scale in an intertidal zone,
J. Foramin. Res., 30, 177–191,
https://doi.org/10.2113/0300177, 2000.
Papaspyrou, S., Diz, P., García-Robledo, E., Corzo, A., and
Jimenez-Arias, J.-L.: Benthic foraminiferal community changes and their
relationship to environmental dynamics in intertidal muddy sediments (Bay of
Cádiz, SW Spain), Mar. Ecol.-Prog. Ser., 490, 121–135,
https://doi.org/10.3354/meps10447, 2013.
Pawlowski, J. and Holzmann, M.: Diversity and geographic distribution of
benthic foraminifera: a molecular perspective, Biodivers. Conserv., 17,
317–328, https://doi.org/10.1007/s10531-007-9253-8, 2008.
Pawlowski, J., Bolivar, I., Farhni, J., and Zaninetti, L.: DNA analysis of
“Ammonia beccarii” morphotypes: one or more species?, Mar. Micropaleontol., 26,
171–178, https://doi.org/10.1016/0377-8398(95)00022-4, 1995.
Petersen, J., Riedel, B., Barras, C., Pays, O., Guihéneuf, A.,
Mabilleau, G., Schweizer, M., Meysman, F. J. R., and Jorissen, F. J.:
Improved methodology for measuring pore patterns in the benthic
foraminiferal genus Ammonia, Marine Micropaleontol., 128, 1–13,
https://doi.org/10.1016/j.marmicro.2016.08.001, 2016.
Polovodova, I., Nikulina, A., Schönfeld, J., and Dullo, W.-C.: Recent
benthic foraminifera in the Flensburg Fjord (Western Baltic Sea), J.
Micropalaeontol., 28, 131–142, https://doi.org/10.1144/jm.28.2.131,
2009.
Richirt, J., Schweizer, M., Bouchet, V. M. P., Mouret, A., Quinchard, S., and
Jorissen, F. J.: Morphological distinction of three Ammonia phylotypes occurring
along european coasts, J. Foramin. Res., 49, 77–94,
https://doi.org/10.2113/gsjfr.49.1.76, 2019a.
Richirt, J., Champmartin, S., Schweizer, M., Mouret, A., Petersen, J.,
Ambari, A., and Jorissen, F. J.: Scaling laws explain foraminiferal pore
patterns, Sci. Rep.-UK, 9, 9149,
https://doi.org/10.1038/s41598-019-45617-x, 2019b.
Richirt, J., Riedel, B., Mouret, A., Schweizer, M., Langlet, D., Seitaj, D., Meysman, F. J. R., Slomp, C. P., and Jorissen, F. J.: Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands), Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, 2020.
Saad,
S. A. and Wade, C. M.: Biogeographic distribution and habitat association of
Ammonia genetic variants around the coastline of Great Britain, Mar.
Micropaleontol., 124, 54–62,
https://doi.org/10.1016/j.marmicro.2016.01.004, 2016.
Saad, S. A. and Wade, C. M.: Seasonal and Spatial Variations of Saltmarsh
Benthic Foraminiferal Communities from North Norfolk, England, Microb. Ecol.,
73, 539–555, https://doi.org/10.1007/s00248-016-0895-5, 2017.
Salomon, J.-C. and Breton, M.: An atlas of long-term currents in the
channel, Oceanol. Acta, 16, 439–448, 1993.
Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., and
Spezzaferri, S.: The FOBIMO (FOraminiferal BIo-MOnitoring)
initiative – Towards a standardised protocol for soft-bottom benthic
foraminiferal monitoring studies, Mar. Micropaleontol., 94–95, 1–13,
https://doi.org/10.1016/j.marmicro.2012.06.001, 2012.
Schweizer, M., Jorissen, F., and Geslin, E.: Contributions of molecular
phylogenetics to foraminiferal taxonomy: General overview and example of
Pseudoeponides falsobeccarii Rouvillois, 1974, C. R. Palevol., 10, 95–105,
https://doi.org/10.1016/j.crpv.2011.01.003, 2011a.
Schweizer, M., Polovodova, I., Nikulina, A., and Schönfeld, J.: Molecular
identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel Fjord
(SW Baltic Sea) with rDNA sequences, Helgoland Mar. Res., 65, 1–10,
https://doi.org/10.1007/s10152-010-0194-3, 2011b.
Schweizer, M., Richirt, J., Quinchard, S., Jauffrais, T., Laenger, A., Garnier, J., Saur, H., Toyofuku, T., Pawlowski, J., Jorissen, F. J.: Distribution of intertidal Ammonia phylotypes (Foraminifera, Rhizaria) along the European coasts and beyond, in preparation, 2021.
Sen Gupta, B. K.: Introduction to modern Foraminifera, in: Modern Foraminifera, edited by: Sen Gupta, B. K., Kluwer Academic Publisher, Dordrecht, 3–6, 2003.
Wefer, G.: Umwelt, Produktion und Sedimentation benthischer Foraminiferen in
der westlichen Ostsee, PhD thesis, University of Kiel, Germany, 1976.
Weiner, A. K. M., Morard, R., Weinkauf, M. F. G., Darling, K. F., André,
A., Quillévéré, F., Ujiie, Y., Douady, C. J., de Vargas, C., and
Kucera, M.: Methodology for Single-Cell Genetic Analysis of Planktonic
Foraminifera for Studies of Protist Diversity and Evolution, Front. Mar.
Sci., 3, 255, https://doi.org/10.3389/fmars.2016.00255, 2016.
Wolff, W. J. and Reise, K.: Oyster Imports as a Vector for the Introduction
of Alien Species into Northern and Western European Coastal Waters, in:
Invasive Aquatic Species of Europe. Distribution, Impacts and Management,
edited by: Leppäkoski, E., Gollasch, S., and Olenin, S., 193–205,
Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-015-9956-6_21, 2002.
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
The study presents (1) a validation of a method which was previously published allowing us to...