Articles | Volume 42, issue 2
https://doi.org/10.5194/jm-42-117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-42-117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Richard M. Besen
CORRESPONDING AUTHOR
Department of Earth Sciences, Institute of Geological Sciences,
Freie Universität Berlin, Malteserstraße 74–100, 12249 Berlin,
Germany
Kathleen Schindler
Department of Earth Sciences, Institute of Geological Sciences,
Freie Universität Berlin, Malteserstraße 74–100, 12249 Berlin,
Germany
Andrew S. Gale
School of the Environment, Geography and Geological Sciences,
University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO13QL,
United Kingdom
Earth Science Department, Natural History Museum, Cromwell Road,
London SW75BD, United Kingdom
Ulrich Struck
Department of Earth Sciences, Institute of Geological Sciences,
Freie Universität Berlin, Malteserstraße 74–100, 12249 Berlin,
Germany
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Related authors
No articles found.
Nariman Mahmoodi, Ulrich Struck, Michael Schneider, and Christoph Merz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-214, https://doi.org/10.5194/hess-2024-214, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding water balance in lakes is complex. We studied Lake Gross Glienicke in Germany, using an innovative method that combines isotope measurements and a hydrological model to improve estimates of water inflow and evaporation. Our findings show a high correlation between the two approaches, leading to better predictions of lake water dynamics. This research offers a reliable way to evaluate the model outputs.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Richard M. Besen, Ulrich Struck, and Ekbert Seibertz
Foss. Rec., 24, 395–441, https://doi.org/10.5194/fr-24-395-2021, https://doi.org/10.5194/fr-24-395-2021, 2021
Short summary
Short summary
The agglutinated foraminiferal fauna in carbonate rocks from the mid-Cretaceous of Lower Saxony is documented and applied to reconstruct former paleoenvironmental conditions. Especially, sea level fluctuations are possible to reconstruct from changes in the foraminiferal record. Differences of the foraminiferal assemblages in different locations, closer or further away from the former coast, are discussed. Described bio-events of the time interval are linked to foraminiferal bio-events.
Dieter Korn, Lucyna Leda, Franziska Heuer, Hemen Moradi Salimi, Elham Farshid, Amir Akbari, Martin Schobben, Abbas Ghaderi, Ulrich Struck, Jana Gliwa, David Ware, and Vachik Hairapetian
Foss. Rec., 24, 171–192, https://doi.org/10.5194/fr-24-171-2021, https://doi.org/10.5194/fr-24-171-2021, 2021
Short summary
Short summary
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their lithological succession, biostratigraphy and chemostratigraphy. Ammonoids enable the clear separation of Wuchiapingian, Changhsingian and Dienerian assemblages. Early Triassic microbialites occur in various horizons. The carbon isotope curve shows a late Changhsingian negative excursion and the lightest values at the base of the Triassic.
Marine Fau, Loïc Villier, Timothy A. M. Ewin, and Andrew S. Gale
Foss. Rec., 23, 141–149, https://doi.org/10.5194/fr-23-141-2020, https://doi.org/10.5194/fr-23-141-2020, 2020
Short summary
Short summary
Forcipulatacea is one of the major clades of extant sea stars with 400 extant species described, but with fewer than 25 fossil species known. Thus, the identification of any new fossil representatives is significant. We reappraise Ophidiaster davidsoni from the Tithonian of Boulogne, France, which was assigned to another major extant group, and reassign it within a new forcipulatacean genus Psammaster gen. nov. A phylogenetic analysis does not place it within any existing forcipulatacean family.
Jana Gliwa, Abbas Ghaderi, Lucyna Leda, Martin Schobben, Sara Tomás, William J. Foster, Marie-Béatrice Forel, Nahideh Ghanizadeh Tabrizi, Stephen E. Grasby, Ulrich Struck, Ali Reza Ashouri, and Dieter Korn
Foss. Rec., 23, 33–69, https://doi.org/10.5194/fr-23-33-2020, https://doi.org/10.5194/fr-23-33-2020, 2020
Short summary
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
Sudeep Kanungo, Paul R. Bown, Jeremy R. Young, and Andrew S. Gale
J. Micropalaeontol., 37, 231–247, https://doi.org/10.5194/jm-37-231-2018, https://doi.org/10.5194/jm-37-231-2018, 2018
Short summary
Short summary
This paper documents a regional warming event in the Albian of the Anglo-Paris Basin and its palaeoclimatic and palaeoceanographic implications. This multi-proxy study utilizes three independent datasets to confirm the warming event that lasted ~ 500 kyr around the middle–upper Albian boundary. The research involved a field study of the Gault Clay (UK) with an in-depth analysis of nannofossils, bulk sediment carbon and oxygen isotopes, and an investigation of ammonites from the formation.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Related subject area
Benthic foraminifera
Miocene Climatic Optimum and Middle Miocene Climate Transition: a foraminiferal record from the central Ross Sea, Antarctica
Distribution of two notodendrodid foraminiferal congeners in McMurdo Sound, Antarctica: an example of extreme regional endemism?
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Alegret, L. and Thomas, E.: Upper Cretaceous and lower Paleogene benthic
foraminifera from northeastern Mexico, Micropaleontology, 47, 269–316,
2001.
Alve, E.: Benthic foraminiferal evidence of environmental change in the
Skagerrak over the past six decades, Nor. Geol. Unders. Bull., 430, 85–93,
1996.
Appfel, R.: Multi-Stratigraphie und Faziesanalyse pelagischer Kalke aus der
tiefen Oberkreide (Untercenoman–Unterconiac) im Straßeneinschnitt am
Ostwestfalen Damm (B61) östlich des Teutoburger Waldes und südlich
von Bielefeld (NRW), diploma thesis, Freie Uni. Berlin, Berlin,
1–163, 1993.
Bąk, K., Bąk, M., Geroch, S., and Manecki, M.: Biostratigraphy and
paleoenvironmental analysis of benthic foraminifera and radiolarians in
Paleogene variegated shales in the Skole unit, Polish Flysch Carpathians.
Ann. Soc. Geol. Pol., 67, 135–154, 1997.
Barnard, T. and Banner, F. T.: Arenaceous Foraminifera from the Upper
Cretaceous of England, Quart. J. Geol. Soc., 109, 173–216, 1953.
Barnard, T. and Banner, F. T.: The Ataxophragmiidae of England: Part I,
Albian–Cenomanian Arenobulimina and Crenaverneuilina, Rev. Española de Micropaleont., 12,
383–430, 1980.
Bartenstein, H.: Taxonomische Bemerkungen zu den Ammobaculites, Haplophragmium, Lituola und verwandten Gattungen
(For.), Senckenbergiana, 33, 313–342, 1952.
Beissel, I.: Die Foraminiferen der Aachener Kreide, Königl. Preuss.
Geol. Landesanst. Abh., 3, 1–78, 1891.
Berggren, W. A. and Kaminski, M. A.: Abyssal Agglutinates: Back to Basics.
in:
Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated
Foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and Scott, D. B., NATO ASI Series C327, Kluwer Acad. Pub., 53–76, 1990.
Berry, E. W.: The smaller foraminifera of the middle Lobitos shales of northwestern
Peru, Eclogae Geol. Helv., 21, 390–405, 1928.
Besen, R. M., Struck, U., and Seibertz, E.: Albian to Turonian agglutinated foraminiferal assemblages of the Lower Saxony Cretaceous sub-basins – implications for sequence stratigraphy and paleoenvironmental interpretation, Foss. Rec., 24, 395–441, https://doi.org/10.5194/fr-24-395-2021, 2021.
Besen, R. M., Achilles, M., Alivernini, M., Voigt, T., Frenzel, P., and
Struck, U.: Stratigraphy and palaeoenvironments in the upper Turonian to
lower Coniacian of the Saxonian Cretaceous Basin (Germany) – insights from
calcareous and agglutinated foraminifers, Acta Geol. Pol., 72,
159–186, https://doi.org/10.24425/agp.2021.139307, 2022a.
Besen, R. M., Hegert, J., and Struck, U.: The hidden agglutinated
foraminifera of the mid-Cretaceous hemipelagic carbonate deposits: A
method–derived bias?, Mar. Micropal., 176, 102168,
https://doi.org/10.1016/j.marmicro.2022.102168, 2022b.
Brady, H. B.: On Saccammina Carteri, a new Foraminifer from the Carboniferous limestone of
Northumberland, Ann. Mag. Nat. Hist., 4, 177–184, 1871.
Brady, H. B.: Notes on some of the reticularian Rhizopoda of the
“CHALLENGER” Expedition; Part 1. On new or little known Arenaceous types,
Quart. J. Micropal. Sci., 19, 20–67, 1879.
Brady, H. B.: Report on the foraminifera dredged by H.M.S.
Challenger during the years 1873–1876, report of the scientific results of the voyage og H.M.S. Challenger, 1873–1876, Zoology, 9, 1–814, 1884.
Bubík, M.: Cretaceous to Paleogene agglutinated foraminifera of the
Bílé Karpaty unit (West Carpathians, Czech Republic), in: Proc. Fourth Internat. Worksh.
agglt. Foram., edited by: Kaminski,
M. A., Geroch, S., and Gasinski, M. A., Grzybowski Found. Spec. Publ., 3, 71–116, ISBN 978-973-595-260-0, 1995.
Bubík, M.: Remarks on the quantitative analysis of deep-sea
agglutinated foraminiferal taphocoenoses with special attention to tubular
astrorhizids, Micropaleontology, 65, 63–74, 2019.
Čech, S. and Uličný, D.: The Turonian–Coniacian stage boundary
in an expanded siliciclastic succession: Integrated stratigraphy in deltaic
through offshore facies, Bohemian Cretaceous Basin, Cretaceous Res., 117, 1–29,
https://doi.org/10.1016/j.cretres.2020.104576, 2020.
Cetean, C. G., Bălc, R., Kaminski, M. A., and Filipescu, S.: Integrated
biostratigraphy and palaeoenvironments of an upper Santonian–upper
Campanian succession from the southern part of the Eastern Carpathians,
Romania, Cretaceous Res., 32, 575–590,
https://doi.org/10.1016/j.cretres.2010.11.001, 2011a.
Cetean, C. G., Setoyama, E., Kaminski, M. A., Neagu, T., Bubík, M.,
Filipescu, S., and Tyszka, J.: Eobigenerina, a cosmopolitan deep-water foraminifer, and
remarks on late Paleozoic to Mesozoic species formely assigned to
Pseudobolivina and Bigenerina, in: Proc. Eigth Internat.
Works. agglt. Foram., edited by: Kaminski, M. A. and Filipescu, S., Grzybowski Found. Spec. Publ., Grzybowski Foundation, 16, 19–27, 2011b.
Chapman, F.: 7. – The Foraminifera of the Gault of Folkestone. 2, Journal of the Royal Microscopical Society, 12, 319–330, 1892.
Charnock, M. A. and Jones, R. W.: Agglutinated foraminifera from the
Paleogene of the North Sea, in: Paleoecology, biostratigraphy, paleoceanography and
taxonomy of agglutinated foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and
Scott, D. B., NATO ASI Ser. C327, Kluwer Acad.
Publ., 139–244, ISBN 978-94-010-5480-5, 1990.
Cushman, J. A.: The foraminifera of the Velasco Shale of the Tampico
Embayment, Bull. American Assoc. Petrol. Geologists, 10, 581–612, 1926.
Cushman, J. A.: Textularia and related forms from the Cretaceous, Cont. Cushman Lab.
Foram. Res., 8, 86–96, 1932.
Cushman, J. A.: The generic position of “Cornuspira cretacea Reuss”, Cont. Cushman. Lab.
Foram. Res., 10, 44–47, 1934.
Cushman, J. A.: A monograph of the foraminiferal family Verneuilinidae,
Cushman Lab. Foram. Res. Spec. Publ., 8, 1–210, 1937.
Cushman, J. A. and Jarvis, P. W.: Cretaceous foraminifera from Trinidad,
Cont. Cushman Lab. Foram. Res., 4, 85–103, 1928.
Cushman, J. A. and Renz, H. H.: The foraminiferal fauna of the Lizard
Springs formation of Trinidad, British West Indies, Cushman Lab. Foram. Res.
Spec. Publ., 18, 1–48, 1946.
Deecke, W.: Die Foraminiferenfauna der Zone des Stephanoceras humphriesianum im Unter-Elsass, Abh. Geol.
Spez.-Kt. Els.-Lothr., 4, 1–68, 1884.
De Montfort, P. D.: Conchyliologie systématique et classification
méthodique des coquilles, Vol. 1, Schoell, Paris, 409 pp., 1808.
D'Orbigny, A.: Paléontologie française: Description zoologique et
géologique de tous les animaux mollusques et rayonnés fossiles de
France. Terrains crétacés. mollusques céphalopodes, Cosson
Paris, 696 pp., 1840.
D'Orbigny, A.: Die fossilien Foraminiferen des tertiären Beckens von
Wien, entdeckt von seiner Excellenz Ritter Joseph von Hauer, Gide et Comp. Paris, 412 pp., 1846.
Earland, A.: Foraminifera. Part 2. South Georgia, Disc. Rep., 7, 29–138,
1933.
Elicki, O., Suhr, P., and Walter, H.: Oberkretazische Foraminiferen aus
Reliktvorkommen bei Siebenlehn (Mittelsachsen), Freiberger Forschungsh. C,
558, 121–139, 2020.
Fisher, R. A., Corbet, A. S., and Williams, C. B.: The relation between the
number of species and the number of individuals in a random sample of an
animal population, J. Ani. Eco., 42–58, 1943.
Franke, A.: Die Foraminiferen und Ostracoden des Emschers, besonders von Obereving und Derne nördlich Dortmund, Dtsch. Geol. Ges. Z., A, Abh., 66, 428–443, 1914.
Frentzen, K.: Die agglutinierenden Foraminiferen der Birmensdorfer Schichten
(Transversarius-Zone in Schwammfazies) des Gebietes um Blumberg in Baden, Paläontol. Z.,
23, 317–343, 1944.
Frenzel, P.: Die benthischen Foraminiferen der Rügener Schreibkreide
(Unter-Maastricht, NE-Deutschland), Neue Pal. Abh., 3, 361 pp., ISBN 3931689042, 2000.
Frieg, C.: Neue Ergebnisse zur Systematik sandschaliger Foraminiferen im
Cenoman des südwestlichen Münsterlandes, Paläontol. Z., 54,
225–240, 1980.
Frieg, C. and Price, R. J.: The subgeneric classification of
Arenobulimina, in: Aspects of Micropalaeontology, edited by: Banner, F. T. and Lord, A. R.,
Springer, 42–80, https://doi.org/10.1007/978-94-011-6841-0, 1982.
Frieg, C. and Kemper, E.: Mikropaläontologische Gliederung und
Abgrenzung von Ober-Alb und Unter-Cenoman in Nordwestdeutschland, Geol. J.,
113, 73–193, 1989.
Fuchs, W.: Eine alpine Foraminiferenfauna des tieferen Mittel-Barreme aus
den Drusbergschichten vom Ranzenberg bei Hohenems in Vorarlberg
(Österreich), Abh. Geol. Bundesanst., 27, 1–49, 1971.
Gale, A. S.: Turonian correlation and sequence stratigraphy of the Chalk in
southern England, In: Sequence
Stratigraphy in British Geology, edited by: Hesselbo, S. P. and Parkinson, D. N., Geol. Soc. London, Spec. Publ., 103,
95–177, https://doi.org/10.1144/GSL.SP.1996.103.01.10, 1996.
Gawor-Biedowa, E.: Turonian and Coniacian Foraminifera from the Nysa Trough,
Sudetes, Poland, Acta Palaeontol. Pol., 25, 3–54, 1980.
Gawor-Biedowa, E.: Campanian and Maastrichtian Foraminifera from the Lublin
Upland, Eastern Poland, Palaeont. Pol., 52, 187 pp., ISBN 83-01-09860-0, 1992.
Geroch, S. and Kaminski, M. A.: An emendation of some Cretaceous species of
“Reophax” (Foraminiferida) from northwest Europe and Poland, in: Proc. Fourth Internat. Worksh. agglut.
Foram., edited by: Kaminski, M. A.,
Geroch, S., and Gasinski, M. A., Grzybowski Found., 3, 117–122, 1995.
Geroch, V. S. and Nowak, W.: Proposal of zonation for the Late
Tithonian–Late Eocene, based upon arenaceous foraminifera from the Outer
Carpathians, Poland, Benthos, 83, 225–239, 1984.
Gradstein, F. M. and Kaminski, M. A.: Taxonomy and biostratigraphy of new
and emended species of Cenozoic deep-water agglutinated foraminifera from
the Labrador and North Seas, Micropaleontology, 35, 75–92, 1989.
Grzybowski, J.: Otwornice czerwonych ilow z Wadowic. Rozprawy Wydzialu
Matematyczno-Przyrodniczego, Akad. Umiej. Krakowie, serya 2, 30, 261–308,
1896.
Grzybowski, J.: Otwornice pokladow naftonosnych okolicy Krosna. Rozprawy
Wydzialu Matematyczno-Przyrodniczego, Akad. Umiej. Krakowie, serya 2, 33,
257–305, 1898.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for Education and Data Analysis, Pal. Electro.,
4, 1–9, 2001.
Hemleben, C. and Troester, J.: Campanian–Maastrichtian deep-water
foraminifers from Hole 543A, Deep Sea Drilling Project, Initial Rep. Deep
Sea Drill. Proj., 78A, 509–532, 1984.
Hercogová, J. and Kriz, J.: New Hemisphaerammininae (Foraminifera) from
the Bohemian Cretaceous basin (Cenomanian), Věst. Ústr. úst.
Geol., 58, 205–215, 1983.
Hjálmarsdóttir, H. R., Hammer, Ø., Nagy, J., and Grundvåg,
S.-A.: Foraminiferal stratigraphy and palaeoenvironment of a
storm-influenced marine shelf: Upper Aptian – lower Albian, Svalbard,
Arctic Norway, Cretaceous Res., 130, 105033,
https://doi.org/10.1016/j.cretres.2021.105033, 2022.
Höglund, H.: Foraminifera in the Gullmar Fjord and the Skagerak, Uppsala
Univ. Zool. Bidr., 26, 328 pp., 1947.
Holbourn, A., Henderson, A. S., and MacLeod, N.: Atlas of Benthic
Foraminifera, Wiley-Blackwell, Nat. Hist. Mus., London, 642 pp., https://doi.org/10.1002/9781118452493, 2013.
Huss, F.: Otwornice aglutynujace serii podslaskiej jednostki roponosnej
Weglowki (Polskie Karpaty Fliszowe)(Agglutinated foraminifera of the
oil-bearing subsilesian series in Weglowka (Polish Flysch Carpathians),
Prace Geol., Polska Akad. Nauk., 34, 7–76, 1966.
Janetschke, N., Niebuhr, B., and Wilmsen, M.: Inter-regional
sequence-stratigraphical synthesis of the Plänerkalk, Elbtal and
Danubian Cretaceous groups (Germany): Cenomanian–Turonian correlations
around the Mid-European Island, Cretaceous Res., 56, 530–549,
https://doi.org/10.1016/j.cretres.2015.04.007, 2015.
Jarvis, I., Gale, A. S., Jenkyns, H. C., and Pearce, M. A.: Secular variation
in Late Cretaceous carbon isotopes: a new δ13C carbonate
reference curve for the Cenomanian–Campanian (99.6–70.6 Ma), Geol. Mag.,
143, 561–608, https://doi.org/10.1017/S0016756806002421, 2006.
Jarvis, I., Trabucho-Alexandre, J., Gröcke, D. R., Uličný, D.,
and Laurin, J.: Intercontinental correlation of organic carbon and carbonate
stable isotope records: evidence of climate and sea-level change during the
Turonian (Cretaceous), Depositional Rec., 1, 53–90,
https://doi.org/10.1002/dep2.6, 2015.
Jarvis, I., Pearce, M., Püttmann, T., Voigt, S., and Walaszczyk, I.:
Palynology and calcareous nannofossil biostratigraphy of the
Turonian–Coniacian boundary: The proposed boundary stratotype at
Salzgitter–Salder, Germany and its correlation in NW Europe, Cretaceous Res.,
123, 1–32, https://doi.org/10.1016/j.cretres.2021.104782, 2021.
Jenkyns, H., Gale, A. S., and Corfield, R.: Carbon-and oxygen-isotope
stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic
significance, Geol. Mag., 131, 1–34, 1994.
Jones, R. W. and Charnock, M. A.: “Morphogroups” of agglutinated
foraminifera. Their life positions and feeding habits and potential
applicability in (paleo)ecological studies, Rev. Paleeobiol., 4,
311–320, 1985.
Jones, T. R. and Parker, W. K.: On the Rhizopodal fauna of the Mediterranean
compared with that of the Italian and some other Tertiary deposits, Quart.
J. Geol. Soc., 16, 292–307, 1860.
Jorissen, J. J., Stiger, H. C., and Widmark, J. G. V.: A conceptual model
explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26,
3–15, 1995.
Kaminski, M., Gradstein, F., and Berggren, W.: Flysch-type agglutinated
foraminiferal assemblages from Trinidad: taxonomy, stratigraphy and
paleobathymetry, Abh. Geol. Bundesanst., 41, 155–227, 1988.
Kaminski, M. A. and Geroch, S.: A revision of foraminiferal species in the
Grzybowski Collection, in:
The Origins of Applied Micropaleontology: The School of Jozef
Grzybowski, edited by: Kaminski, M. A., Geroch, S., and Kaminski, D., Grzybowski Found. Spec. Publ., Grzybowski Foundation, 1, 293–323, ISBN 83-901164-0-5, 1993.
Kaminski, M. A. and Gradstein, F. M.: Atlas of Paleogene cosmopolitan
deep-water agglutinated foraminifera, Grzybowski Found. Spec. Publ., 10,
1–547, 2005.
Kaminski, M. A., Cetean, C. G., and Neagu, T.: Rectogerochammina eugubina nov. gen., nov. sp., a new
agglutinated foraminifer from the Upper Cretaceous of Gubbio, Italy, Rev.
Micropaléontol., 53, 121–124, 2010.
Kaminski, M. A., Cetean, C. G., Balc, R., and Coccioni, R.: Upper Cretaceous
deep-water agglutinated foraminifera from the Contessa Highway Section,
Umbria-Marche basin, Italy: taxonomy and biostratigraphy, in: Proc. Eighth Internat. Worksh. agglut. Foram.,
Grzybwoski Found. Spec. Publ., edited by: Kaminski, M.
A. and Filipescu, S., 16, 71–106, ISBN 978-973-595-260-0, 2011.
Kaminski, M. A., Alegret, L., Hikmahtiar, S., and Waśkowska, A.: The
Paleocene of IODP Site U1511, Tasman Sea: A lagerstatte deposit for
deep-water agglutinated foraminifera, Micropaleontology, 67, 341–364,
2021.
Kaplan, U.: Turonium und Unterconiacium (Oberkreide) im Steinbruch DIMAC bei
Halle (Westfalen), Teutoburger Wald (Östliches Münsterländer
Kreidebecken), Geol. Paläont. Westfalen, 81, 75–105, 2011.
Kuhnt, W.: Agglutinated foraminifera of western Mediterranean Upper
Cretaceous pelagic limestones (Umbrian Apennines, Italy, and Betic
Cordillera, Southern Spain), Micropaleontology, 36, 297–330, 1990.
Kuhnt, W. and Kaminski, M. A.: Paleoecology of Late Cretaceous to Paleocene
deep-water agglutinated foraminifera from the North Atlantic and Western
Tethys, in:
Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated
foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and Scott, D. B., NATO ASI Ser. C327, Kluwer Acad. Press., 433–506, ISBN 978-94-010-5480-5, 1990.
Kuhnt, W., Collins, E., and Scott, D. B.: Deep Water Agglutinated
Foraminiferal Assemblages across the Gulf Stream: Distribution Patterns and
Taphonomy, in: Proc. of the
Fifth Internat. Works. on Agglut. Foram., Grzybowski Found. Spec. Publ., edited by: Hart, M. B., Kaminski, M. A., and Smart, C. W., Grzybowski Foundation,
261–298, ISBN 83-901164-9-9 7, 2000.
Lees, J. A.: The calcareous nannofossil record across the Late Cretaceous
Turonian/Coniacian boundary, including new data from Germany, Poland, the
Czech Republic and England, Cretaceous Res., 29, 40–64,
https://doi.org/10.1016/j.cretres.2007.08.002, 2008.
Leary, P. N.: The Late Cenomanian Anoxic Event; Implications for
foraminiferal evolution, PhD thesis, Plymouth Univ., 325 pp., 1987.
Loeblich, A. R. and Tappan, H.: Eleven new genera of foraminifera, Bull.
U.S. Nat. Museum, 215, 223–232, 1957.
Loeblich, A. R. and Tappan, H.: Foraminiferal genera and their
classification, Vol. 1, pp. 869; Vol. 2, pp. 212, Springer, New York, https://doi.org/10.1007/978-1-4899-5760-3, 1987.
Magniez-Jannin, F.: Les foraminifères de l'Albien de l'Aube:
paléontologie, stratigraphie, écologie, Cahiers Paléont., 416
pp., 1975.
Majzon, L.: Adatok egyes Kárpátaljai flis-rétegekhez,
tekintettel a Globotruncanákra (Beitrage zur Kenntniss einiger Flysch
Schichten des Karpaten-Vorlandes mit Rücksicht auf die Globotruncanen).
A magyar Királyi Földtani Intézet, Évkönyve, Ann.
Hungarian Geol. Inst., 37, 1–169, 1943.
Mjatliuk, E. V.: K vprosu o foraminiferakh c kremnevnym skeletom (On the
question of foraminifera with a siliceous skeleton), Vop. Mikropaleont., 10,
255–269, 1966.
Moullade, M., Kuhnt, W., and Thurow, J.: Agglutinated benthic foraminifers
from the Upper Cretaceous variegated clays of the North Atlantic Ocean (DSDP
Leg 93 and ODP Leg 103), in:
Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Boillot, G., Winterer, E. L., Meyer, A. W., Applegate, J., Baltruck, M., Bergen, J. A., Comas, M. C., Davies, T. A., Dunham, K., Evans, C. A., Girardeau, J., Goldberg, D., Haggerty, J. A., Jansa, L. F., Johnson, J. A., Kasahara, J., Loreau, J.-P., Luna, E., Moullade, M., Ogg, J. G., Sarti, M., Thurow, J., and Williamson, M. A., College Station, Texas (Ocean Drilling Program), 103,
349–377, https://doi.org/10.2973/odp.proc.sr.103.1988, 1988.
Murray, J. W.: Ecology and applications of benthic foraminifera, 422 pp.,
Cambridge University Press, New York, https://doi.org/10.1017/CBO9780511535529, 2006.
Murray, J. W. and Alve, E.: High Diversity Agglutinated Foraminiferal
Assemblages from the NE Atlantic: Dissolution Experiments, Cushman Found.
Spec. Publ., 32, 33–51, 1994.
Murray, J. W. and Alve, E.: Taphonomic experiments on marginal marine
foraminiferal assemblages: how much ecological information is preserved?,
Palaeogeogr. Palaeocl., 149, 183–197,
https://doi.org/10.1016/S0031-0182(98)00200-4, 1999a.
Murray, J. W. and Alve, E.: Natural dissolution of modern shallow water
benthic foraminifera: taphonomic effects on the palaeoecological record,
Palaeogeogr. Palaeocl., 146, 195–209,
https://doi.org/10.1016/S0031-0182(98)00132-1, 1999b.
Murray, J. W. and Alve, E.: The distribution of agglutinated foraminifera in
NW European seas: Baseline data for the interpretation of fossil
assemblages, Palaeontol. Electron., 14, 1–41, 2011.
Murray, J. W., Alve, E., and Cundy, A.: The origin of modern agglutinated
foraminiferal assemblages: evidence from a stratified fjord, Estuar. Coast.
Shelf S., 58, 677–697, https://doi.org/10.1016/S0272-7714(03)00179-3,
2003.
Murray, J. W., Alve, E., and Jones, B. W.: A new look at modern agglutinated
benthic foraminiferal morphogroups: their value in palaeoecological
interpretation, Palaeogeogr. Palaeocl., 309, 229–241,
https://doi.org/10.1016/j.palaeo.2011.06.006, 2011.
Nagy, J., Kaminski, M. A., Kuhnt, W., and Bremer, M. A.: Agglutinated
Foraminifera from Neritic to Bathyal Facies in the Palaeogene of Spitsbergen
and the Barents Sea, in:
Proc. of the Fifth Internat. Works. on Agglut. Foram., edited by: Hart, M. B., Kaminski, M. A., and Smart, C. W., Grzybowski Found.
Spec. Publ., 7, 333–361, ISBN 83-901164-9-9, 2000.
Nagy, J., Hess, S., Dypvik, H., and Bjærke, T.: Marine shelf to paralic
biofacies of Upper Triassic to Lower Jurassic deposits in Spitsbergen,
Palaeogeogr. Palaeocl., 300, 138–151,
https://doi.org/10.1016/j.palaeo.2010.12.018, 2011.
Nagy, J., Jargvoll, D., Dypvik, H., Jochmann, M., and Riber, L.:
Environmental changes during the Paleocene–Eocene Thermal Maximum in
Spitsbergen as reflected by benthic foraminifera, Polar Res., 32, 19737,
https://doi.org/10.3402/polar.v32i0.19737, 2013.
Neagu, T.: Studiul foraminiferelor aglutinante din argilele Cretacic
superiorare de pe Valea Sadovei (Cimpulung–Moldovenesc) si bazinul superior
al vaii Buzauliu, Stud. Cerc. Geol., Acad. Rep. Pop. Rom-, Sect. Geol.
Geogr. Inst. Geol. Geogr., 7, 45–81, 1962.
Neagu, T.: Micropaleontological and stratigraphical study of the Upper
Cretaceous deposits between the upper valleys of the Buzau and Riul Negru
Rivers (Eastern Carpathians), Bucarest, Mem. Inst. Geol., 12, 7–109, 1970.
Neagu, T.: Gerochammina n.g. and related genera from the Upper Cretaceous flysch-type
benthic foraminiferal fauna, Eastern Carpathians – Romania, in: Paleoecology,
biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera, edited by: Hemleben,
C., Kaminski, M. A., Kuhnt, W., and Scott, D. B.,
NATO ASI Ser. C327, Kluwer Acad. Press, 245–265, ISBN 978-94-010-5480-5, 1990.
Neagu, T.: Smaller agglutinated foraminifera from an olistolith of Adneth
Limestones, Tipea Valley, Persani Mountains, Romania, in: Proc. Sixth Internat. Works. Agglt. Foram., Grzybowski
Found. Spec. Publ., edited by: Bubík, M. and
Kaminski, M. A., 8, 381–392, ISBN 83-912385-4-7, 2004.
Niebuhr, B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Wiese, F.,
and Wilmsen, M.: Lithostratigraphie der norddeutschen Oberkreide,
Schrift.-R. Dt. Ges. Geowiss., 55, 136 pp., ISBN 978-3-510-49202-2, 2007.
Olde, K., Jarvis, I., Pearce, M., Uličný, D., Tocher, B.,
Trabucho-Alexandre, J., and Gröcke, D.: A revised northern European
Turonian (Upper Cretaceous) dinoflagellate cyst biostratigraphy: integrating
palynology and carbon isotope events, Rev. Palaeobot. Palyno., 213, 1–16,
https://doi.org/10.1016/j.revpalbo.2014.10.006, 2015.
Perner, J.: Über die Foraminiferen des böhmischen Cenomans,
Paleontogr. Bohemiae, 1, 65 pp., 1892.
Peryt, D., Lahodynsky, R., and Durakiewicz, T.: Deep-water agglutinated
foraminiferal changes and stable isotope profiles across the
Cretaceous–Paleogene boundary in the Rotwand-graben section, Eastern Alps
(Austria), Palaeogeogr. Palaeocl., 132, 287–307,
https://doi.org/10.1016/S0031-0182(97)00056-4, 1997.
Peryt, D., Alegret, L., and Molina, E.: Agglutinated foraminifers and their
response to the Cretaceous/Paleogene (K/P) boundary event at Aïn
Settara, Tunisia, in: Proc. Sixth
Internat. Worksh. agglut. Foram., edited by: Bubík, M. and Kaminski, M. A., Grzybowski Found. Spec. Publ., Grzybowski Foundation, 8,
393–412, ISBN 83-912385-4-7, 2004.
Philip, J. and Floquet, M.: Late Cenomanian (94.7–93.5), in: Atlas Peri-Tethys
palaeogeographical maps, edited by: Dercourt, J.,
Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F.,
Cadet, J. P., Crasquin, S., and Sandulescu, M., CCGM/CGMW, Paris, 129–136, 2000.
Reuss, A. E.: Geognostische Skizzen aus Böhmen. Bd. 2: Die Kreidegebilde
des westlichen Böhmens, ein monographischer Versuch. Nebst Bemerkungen
über die Braunkohlenlager jenseits der Elbe und eine Uebersicht der
fossilen Fischreste Böhmens, Medau & Comp., Prag, 304 pp., 1844.
Reuss, A. E.: Die Versteinerungen der böhmischen Kreideformation. Mit
Abbildungen der neuen oder weniger bekannten Arten, Abt. 1. Schweizerbart,
Stuttgart, 58 pp., 1845.
Reuss, A. E.: Über die fossilen Foraminiferen und Entomostraceen der
Septarianthone der Umgegend von Berlin, Z. Dt. Geol. Ges., 3, 49–91, 1851.
Richardt, N. and Wilmsen, M.: Lower Upper Cretaceous standard section of the
southern Münsterland (NW Germany): carbon stable-isotopes and sequence
stratigraphy, Newsl. Stratigr., 45, 1–24,
https://doi.org/10.1127/0078-0421/2012/0012, 2012.
Schubert, R. J.: Neue und interessante Foraminiferen aus dem südtiroler
Alttertiär, Beitr. Paläont. Geol. Österr.–Ungarn Orients, 14,
9–26, 1902.
Schultze, F. E.: Zoologische Ergebnisse der Nordseefahrt vom 21. Juli bis 9.
September 1872: 1. Rhizopoden, J.-Ber. Comm. Wiss. Unter. Dt. Meere, 2–3,
1875.
Setoyama, E., Kaminski, M. A., and Tyszka, J.: Late Cretaceous agglutinated
foraminifera and implications for the biostratigraphy and palaeobiogeography
of the southwestern Barents Sea, in: Proc. Eighth Internat. Worksh. agglut. Foram., edited by: Kaminski, M. A. and Filipescu, S., Grzybowski Found.
Spec. Publ., Grzybowski Foundation, 20, 251–309, ISBN 978-973-595-260-0, 2011.
Setoyama, E., Kaminski, M. A., and Tyska, J.: Late Cretaceous–Paleogene
foraminiferal morphogroups as palaeoenvironmental tracers of the rifted
Labrador margin, northern proto-Atlantic, in: Proc. Ninth Internat. Worksh. agglut. Foram., edited by: Kaminski, M. A. and Alegret,
L., Grzybowski Found.
Spec. Publ., Grzybowski Foundation, 22, 179–220, ISBN 978-84-92522-54-5, 2017.
Shannon, C. E.: A mathematical theory of communication, Bell Syst.
Tech. J., 27, 379–423, 623–656, 1948.
Sikora, P. J., Howe, R. W., Gale, A. S., and Stein, J. A.: Chronostratigraphy
of proposed Turonian–Coniacian (Upper Cretaceous) stage boundary
stratotypes: Salzgitter–Salder, Germany, and Wagon Mound, New Mexico, USA,
in: The Palynology and
Micropalaeontology of Boundaries, edited by: Beaudoin, A. B. and Head, M. J., Geol. Soc., London, Spec. Publ., 230,
207–242, 2004.
Skelton, P. W.: Introduction to the Cretaceous, in: The
cretaceous world, edited by: Skelton, P. W., Cambridge Univ. Press, 9–41, ISBN 0 521 53843, 2003.
Sliter, W. V.: Upper Cretaceous foraminifera from the southern California
and northwestern Baja California, Mexico, Univ. Kansas Paleont. Contrib., 49, 141 pp., 1968.
Szarek, R., Kłosowska, B., Prokoph, A., Kuhnt, W., and Wagner, T.: Upper
Albian agglutinated foraminifera from two wells in Northeast Germany, in:
Proc. Fifth Internat.
Works. Agglt. Foram., edited by: Hart, M. B., Kaminski, M. A., and Smart, C. W., Grzybowski Found. Spec. Publ., 7, 445–463, ISBN 83-901164-9-9, 2000.
Tappan, H.: Foraminifera from the Duck Creek formation of Oklahoma and
Texas, J. Paleontol., 17, 467–517, 1943.
Ten Dam, A.: Les foraminifères de l'Albien des Pays-Bas, Soc. Géol.
France, 29, 1–66, 1950.
Uličný, D., Jarvis, I., Gröcke, D. R., Čech, S., Laurin, J.,
Olde, K., Trabucho-Alexandre, J., Švábenická, L., and Pedentchouk,
N.: A high-resolution carbon-isotope record of the Turonian stage correlated
to a siliciclastic basin fill: Implications for mid-Cretaceous sea-level
change, Palaeogeogr. Palaeocl., 405, 42–58,
https://doi.org/10.1016/j.palaeo.2014.03.033, 2014.
Van Den Akker, T. J. H. A., Kaminski, M. A., Gradstein, F. M., and Wood, J.: Campanian to Palaeocene biostratigraphy and palaeoenvironments in the Foula Sub-basin, west of the Shetland Islands, UK, J. Micropalaeontol., 19, 23–43, https://doi.org/10.1144/jm.19.1.23, 2000.
van der Zwaan, G. J., Duijnstee, I. A. P., den Dulk, M., Ernst, S. R.,
Jannink, N. T., and Kouwenhoven, T. J.: Benthic foraminifers: proxies or
problems? A review of paleocological concepts, Earth-Sci. Rev., 46, 213–236,
1999.
Vašíċek, M.: Poznámky k mikrobiostratigrafii magurského
flyše na Moravě, Věst. Stát. Geol. Úst. ěsk. Rep.,
22, 235–256, 1947.
Voigt, S. and Hilbrecht, H.: Late Cretaceous carbon isotope stratigraphy in
Europe: correlation and relations with sea level and sediment stability,
Palaeogeogr. Palaeocl., 134, 39–59,
https://doi.org/10.1016/S0031-0182(96)00156-3, 1997.
Voigt, S. and Wiese, F.: Evidence for Late Cretaceous (Late Turonian)
climate cooling from oxygen-isotope variations and palaeobiogeographic
changes in Western and Central Europe, J. Geol. Soc., 157, 737–743,
https://doi.org/10.1144/jgs.157.4.737, 2000.
Voigt, S., Aurag, A., Leis, F., and Kaplan, U.: Late Cenomanian to Middle
Turonian high-resolution carbon isotope stratigraphy: New data from the
Münsterland Cretaceous Basin, Germany, Earth Planet. Sc. Lett., 253,
196–210, https://doi.org/10.1016/j.epsl.2006.10.026, 2007.
Voigt, S., Wagreich, M., Surlyk, F., Walaszczyk, I., Uličný, D., and
Čech, S.: Cretaceous, in: Geology of central Europe, edited by: McCann, T.,
Vol. 2, London, Geol. Soc., 923–997, https://doi.org/10.1144/CEV2P, 2008.
Voigt, S., Püttmann, T., Mutterlose, J., Bornemann, A., Jarvis, I.,
Pearce, M., and Walaszczyk, I.: Reassessment of the Salzgitter–Salder
section as a potential stratotype for the Turonian–Coniacian boundary:
stable carbon isotopes and cyclostratigraphy constrained by calcareous
nannofossils and palynology, Newsl. Stratigr., 54, 209–228,
https://doi.org/10.1127/nos/2020/0615, 2020.
Voloshina, A.: Ataxophragmeids from Upper Cretaceous Deposits in the
Volyn-Podol Margin of the Russian Platform, Tr. Ukr. NIGRI (Proc. Ukrainian
SSr Geol. Paleont. Inst.), 27, 55–130, 1972.
Walaszczyk, I. and Cobban, W. A.: The Turonian–Coniacian boundary in the
United States Western Interior, Acta Geol. Pol., 48, 495–507, 1999.
Walaszczyk, I. and Cobban, W. A.: Inoceramid faunas and biostratigraphy of
the Upper Turonian–Lower Coniacian of the Western Interior of the United
States, Spec. Pap. Pal., 64, 118 pp., 2000.
Walaszczyk, I. and Wood, C. J.: Inoceramids and biostratigraphy at the
Turonian/Coniacian boundary; based on the Salzgitter-Salder quarry, Lower
Saxony, Germany, and the Słupia Nadbrzeżna section, central Poland,
Acta Geol. Pol., 48, 395–434, 1998.
Walaszczyk, I., Wood, C. J., Lees, J. A., Peryt, D., Voigt, S., and Wiese,
F.: The Salzgitter-Salder quarry (Lower Saxony, Germany) and Słupia
Nadbrzeżna river cliff section (Central Poland): a proposed candidate
composite global boundary stratotype section and point for the Coniacian
stage (upper Cretaceous), Acta Geol. Pol., 60, 445–477, 2010.
Walaszczyk, I., Čech, S., Crampton, J. S., Dubicka, Z., Ifrim, C.,
Jarvis, I., Kennedy, W. J., Lees, J. A., Lodowski, D., Pearce, M., Peryt,
D., Sageman, B., Schiøler, P., Todes, J., Uličný, D., Voigt, S.,
and Wiese, F., With contributions by Linnert, C., Püttmann, T., and
Toshimitsu, S.: The Global Boundary Stratotype Section and Point (GSSP) for
the base of the Coniacian Stage (Salzgitter-Salder, Germany) and its
auxiliary sections (Słupia Nadbrzeżna, central Poland;
Střeleč, Czech Republic; and El Rosario, NE Mexico), Episodes, 45,
181–220, https://doi.org/10.18814/epiiugs/2021/021022, 2022.
Waters, J. A.: A group of foraminifera from the Dornick Hills Formation of
the Ardmore Basin, J. Paleontol., 1, 129–133, 1927.
Weidich, K. F.: Die kalkalpine Unterkreide und ihre Foraminiferenfauna,
Zitteliana, 17, 1–312, 1990.
Wiese, F.: Stable isotope data (δ13C, δ18O) from
the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria,
northern Spain) with a comparison to northern Germany (Söhlde &
Salzgitter-Salder), Newsl. Stratigr., 37, 37–62,
https://doi.org/10.1127/nos/37/1999/37, 1999.
Wiese, F. and Voigt, S.: Late Turonian (Cretaceous) climate cooling in
Europe: faunal response and possible causes, Geobios, 35, 65–77,
https://doi.org/10.1016/S0016-6995(02)00010-4, 2002.
Wiese, F., Wood, C. J., and Kaplan, U.: 20 years of event stratigraphy in NW
Germany; advances and open questions, Acta Geol. Pol., 54, 639–656,
2004.
Wiese, F., Zobel, K., and Keupp, H.: Calcareous dinoflagellate cysts and the
Turonian nutrient crisis – Data from the upper Turonian of the Lower Saxony
Basin (northern Germany), Cretaceous Res., 56, 673–688,
https://doi.org/10.1016/j.cretres.2015.06.007, 2015.
Wiese, F., Zobel, K., and Mortimore, R. N.: Intrinsic processes control late
Turonian calcareous dinoflagellate cyst assemblages – A case study from the
Sussex chalk (England), Cretaceous Res., 56, 1–12,
https://doi.org/10.1016/j.cretres.2017.04.003, 2017.
Wilmsen, M.: Sequence stratigraphy and palaeoceanography of the Cenomanian
Stage in northern Germany, Cretaceous Res., 24, 525–568,
https://doi.org/10.1016/S0195-6671(03)00069-7, 2003.
Wolfgring, E., Kaminski, M. A., Waśkowska, A., Wainman, C. C., Petrizzo,
M. R., Lee, E. Y., Edvardsen, T., and Gong, S.: Foraminiferal stratigraphy
and paleoenvironments of a high latitude marginal marine basin – A Late
Cretaceous record from IODP Site U1512 (Great Australian Bight),
Palaeogeogr. Palaeocl., 580, 110604, https://doi.org/10.1016/j.palaeo.2021.110604, 2021.
Wood, C. J. and Ernst, G.: C 2.9 Turonian–Coniacian of Salzgitter Salder, in:
Key localities of the northwest European Cretaceous, edited by: Mutterlose, J., Bornemann, A., Rauer, S., Spaeth, C., and Wood, C. J., Bochumer Geol.
Geotech. Arb., 48, 94–101, 1998.
Wood, C. J., Ernst, G., and Rasemann, G.: The Turonian–Coniacian stage
boundary in Lower Saxony (Germany) and adjacent areas: the Salzgitter-Salder
quarry as a proposed international standard section, B. Geol. Soc.
Denmark, 33, 225–238, 1984.
Wray, D. S., Kaplan, U., and Wood, C. J.: Tuff-Vorkommen und ihre Bio- und
Eventstratigraphie im Turon des Teutoburger Waldes, der Egge und des
Haarstrangs, Geol. Paläont. Westfalen, 37, 5–53, 1995.
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the...